
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 1

JavaScript Dead Code Identification,
Elimination, and Empirical Assessment

Ivano Malavolta, Kishan Nirghin, Gian Luca Scoccia, Simone Romano, Salvatore Lombardi,
Giuseppe Scanniello, Patricia Lago

Abstract—Web apps are built by using a combination of HTML, CSS, and JavaScript. While building modern web apps, it is common
practice to make use of third-party libraries and frameworks, as to improve developers’ productivity and code quality. Alongside these
benefits, the adoption of such libraries results in the introduction of JavaScript dead code, i.e., code implementing unused
functionalities. The costs for downloading and parsing dead code can negatively contribute to the loading time and resource usage of
web apps. The goal of our study is two-fold. First, we present Lacuna, an approach for automatically detecting and eliminating
JavaScript dead code from web apps. The proposed approach supports both static and dynamic analyses, it is extensible and can be
applied to any JavaScript code base, without imposing constraints on the coding style or on the use of specific JavaScript constructs.
Secondly, by leveraging Lacuna we conduct an experiment to empirically evaluate the run-time overhead of JavaScript dead code in
terms of energy consumption, performance, network usage, and resource usage in the context of mobile web apps. We applied Lacuna
four times on 30 mobile web apps independently developed by third-party developers, each time eliminating dead code according to a
different optimization level provided by Lacuna. Afterward, each different version of the web app is executed on an Android device,
while collecting measures to assess the potential run-time overhead caused by dead code. Experimental results, among others,
highlight that the removal of JavaScript dead code has a positive impact on the loading time of mobile web apps, while significantly
reducing the number of bytes transferred over the network.

Index Terms—Dead code, JavaScript.

✦

1 INTRODUCTION

Web apps are built by using a combination of HTML,
CSS, and JavaScript. To increase developers’ productiv-
ity via code reuse, we have been witnessing a prolifera-
tion of third-party libraries and frameworks, ranging from
Model-View-Controller (MVC) frameworks, efficient DOM
manipulators, User-Interface (UI) kits, etc. [1]. This phe-
nomenon is happening not only for browser-based web
apps, but even for mobile [2] and desktop software [3].
In addition to the speed-up of the development, the use
of these libraries and frameworks—which are usually well
tested and maintained—positively affects the quality of the
implemented web-based solutions (or also web apps from
here onwards). Unfortunately, this comes at the price of
an increase in their execution time and higher usage of re-
sources. For example, given a web app, the used JavaScript
framework could include unused functionalities that are
never executed. In such a context, the code implementing
unused functionalities is known as dead code [4]. Besides the
obvious cost of increased file size and network transfer time,
there is an additional hidden cost to dead code: despite
JavaScript dead code never being executed at run-time, it

• I. Malavolta, K. Nirghin, and P. Lago are with the Vrije Universiteit
Amsterdam, The Netherlands.
E-mails: i.malavolta@vu.nl, k.j.nirghin@student.vu.nl, p.lago@vu.nl

• G. L. Scoccia, is with the University of L’Aquila, Italy.
E-mail: gianluca.scoccia@univaq.it

• S. Romano and G. Scanniello are with the University of Salerno, Italy
E-mail: siromano@unisa.it, gscanniello@unisa.it

• S. Lombardi is with the University of Basilicata, Italy.
E-mail: salvatore.lombardi@studenti.unibas.it

is still downloaded and parsed by the JavaScript engine.
This overhead can take a significant portion of the complete
execution time of JavaScript code [5]. The costs for down-
loading and parsing dead code can negatively contribute to
the loading time and energy consumption of web apps.

While some approaches have been developed to mini-
mize this overhead (e.g., lazy parsing1 and script stream-
ing2), dead code identification and elimination is still an
open problem in web apps [6]. As far as the identification
of JavaScript dead code in web apps, the currently available
solutions either: (i) impose a certain coding style to develop-
ers, banning certain code structures (e.g., object reflection),
or (ii) require specific constructs of the JavaScript specifica-
tion. An example of the latter is the use of modules, which
allow developers to specify self-contained namespaces in
JavaScript and to conditionally load them when needed.
While modules are certainly useful in terms of maintain-
ability and code reuse, most web apps today have not been
built with modules in mind [1].

Researchers have investigated the presence of dead code
in web apps. For example, Boomsma et al. [7] reported
that, in a subsystem of an industrial web app written in
PHP, the developers removed 30% of the subsystem’s files
because these files were actually dead code. Eder et al. [8]
observed that, in an industrial web app written in .NET, 25%
of methods were dead. Surprisingly, no empirical studies
have been conducted to assess the effect of JavaScript dead
code on Web apps at run-time. For example, so far, no

1. https://v8.dev/blog/preparser
2. https://v8.dev/blog/v8-release-75

https://v8.dev/blog/preparser
https://v8.dev/blog/v8-release-75

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 2

empirical studies have been conducted to assess the impact
of downloading and parsing the JavaScript dead code of a
web app. In other words, the common belief is that there is a
cost to pay when JavaScript dead code is present, but there
is no evidence of its extent.

The goal of this paper is two-fold. First, we present La-
cuna, an approach for automatically eliminating JavaScript
dead code from web apps (Section 2.2). Secondly, we em-
pirically evaluate the run-time overhead of JavaScript dead
code in terms of energy consumption, performance, network
usage, and resource usage in the context of mobile web apps
(Section 3).
Lacuna. At the core of Lacuna lies the construction of a call
graph Gw of the web app w being analysed; Gw is uni-
directed and represents JavaScript functions as nodes and
the caller-callee relationship between functions as edges.
In this context, dead code elimination consists of the re-
moval of all the (connected) components in Gw that are
isolated from the root node representing the global scope
of the web app. The unique characteristic of Lacuna is its
ability to build and iteratively refine Gw by executing in se-
quence different program analysis techniques, each with its
own potential support for specific aspects of the JavaScript
language. Lacuna supports any kind of program analyses
(both static and dynamic), provided that they are aimed at
building a call graph of the JavaScript code being analysed.
Lacuna is extensible and independent from the used program
analysis techniques, allowing developers and researchers to
build the combination of analyses that best fits their own
needs. Finally, Lacuna can be applied to any JavaScript-
based web app, without imposing any constraints on the
developer on coding style (e.g., banning the use of reflection
or objects self-inspection) or on the use of specific JavaScript
features (e.g., modules). We exploit this feature of Lacuna
in our experiment, where we assess the run-time overhead
of JavaScript dead code on 30 independently-developed
mobile web apps.
Experiment. The goal of our experiment is to empirically
assess the overhead that JavaScript dead code has when
executing mobile web apps. We scope this experiment in
the context of mobile web apps since (i) web browsers are
more used on mobile devices [9], (ii) the web browser is
one of the most used apps on mobile devices [10], and
(iii) mobile devices tend to have limited processing power,
poorer network capacities, and lesser memory with respect
to desktop machines [5]. In this experiment, we target 30
mobile web apps independently developed by third-party
web developers. The 30 web apps are divided into two
different families: 15 in-the-lab web apps and 15 in-the-
wild web apps. In-the-lab subjects are randomly sampled
from the TodoMVC project [11]. This project contains dif-
ferent implementations of the “same” Todo web app, each
using a different JavaScript MV* (Model View Anything)
framework (e.g., AngularJS, React, Vue.js, etc.). Since all in-
the-lab subjects share the same functionalities, they might
negatively influence the experiment’s external validity, mak-
ing our results less generalizable. In order to mitigate this
potential bias, we decided to complement the 15 in-the-
lab subjects with 15 additional in-the-wild subjects; those
subjects are sampled from the Tranco list [12] and include
well-known web apps such as amazon.com, wikipedia.com,

and youtube.com. We applied Lacuna four times on each of
the 30 mobile web apps, each time eliminating dead code
according to a different optimization level of Lacuna (see
Section 2.2.4). Later, we executed each different version of
the mobile web apps, while collecting measures where the
presence of dead code might result in run-time overhead
for the user experience or for the (technical, ecological)
sustainability of mobile web apps. The most notable results
of this experiment are:

• eliminating JavaScript dead code makes the consid-
ered mobile web apps slightly more energy-efficient
across all Lacuna optimization levels, but this phe-
nomenon is not statistically significant;

• considered mobile web apps load faster when dead
code is eliminated, especially for the most aggressive
optimization level of Lacuna (this result is statisti-
cally significant, with a small effect size), however,
the measures of first contentful paint and first paint
do not show any noticeable improvement across the
various Lacuna optimization levels;

• the elimination of JavaScript dead code leads to
noticeable (and statistically significant) differences in
terms of the number of performed HTTP requests
only for in-the-lab subjects;

• the number of transferred bytes (significantly) dimin-
ishes when dead code is eliminated, especially for the
most aggressive optimization level of Lacuna, with
small effect size for in-the-lab subjects and medium
effect size for in-the-wild subjects;

• CPU and memory usage tend to be (significantly)
lower when dead code is eliminated from in-the-wild
subjects, but not for in-the-lab subjects; GPU usage is
(significantly) lower for in-the-lab subjects without
JavaScript dead code, but not for in-the-wild ones.

An initial version of Lacuna was presented at the 2018
IEEE International Conference on Software Analysis, Evo-
lution and Reengineering [6]. The first new contributions
of this journal version consist of an in-depth description
of the new features of Lacuna, described in Section 2.2.6.
The current implementation of Lacuna has been completely
redone and it is publicly available on itHub [13]. Another
new contribution of this paper is the empirical evaluation
of Lacuna, for which we designed, conducted, and reported
an experiment about the run-time overhead of JavaScript
dead code in terms of energy consumption, performance
(e.g., page load time), network usage, and resources usage
in the context of mobile web apps. In summary, the main
contributions of this paper are:

• the presentation of Lacuna, an extensible approach
for JavaScript dead code elimination;

• the integration of five new third-party analysis tech-
niques in Lacuna;

• a completely new and publicly available implemen-
tation of Lacuna in Node.js;

• an experiment on the run-time overhead of
JavaScript dead code on 30 third-party web apps;

• a publicly available replication package [14].

The target audience of the research presented in this pa-
per consists of (i) web developers and (ii) researchers. Web

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 3

developers can use the current implementation of Lacuna
for removing dead code from their web apps, thus making
their products more lightweight in terms of, e.g., network
usage, load time, or energy consumption. Researchers can
use Lacuna as a means for benchmarking their analysis
techniques for JavaScript dead code elimination.
Paper Structure. The remainder of this paper is organized
as follows. Section 2.1 provides background information on
dead code, while Section 2.2 presents our extended version
of Lacuna. In Section 3, we introduce the empirical study
on the run-time overhead of JavaScript dead code. The
obtained results are reported in Section 4. A discussion
of the obtained results and the threats to validity of the
experiment are presented in Section 5. Finally, Section 6
presents related work and Section 7 closes the paper with
final remarks.

2 BACKGROUND

In this section, we provide context and discuss preliminary
concepts required in the remainder of our paper. We define
the concept of dead code, discuss related research, provide
a description of the inner workings of Lacuna, and describe
the results of our internal and external evaluations of La-
cuna.

2.1 Dead Code

Dead code is part of the so-called code smells, a series of
indicators and characteristics in the source code of a pro-
gram that can possibly indicate a deeper problem. Although
dead code was not considered by Fowler in his original
catalog of code smells [15], it was later introduced in their
respective code-smell catalogs by Brown [16], Wake [17] and
Martin [18].

The perspective of these authors towards dead code is
that of refactoring—i.e., dead code removal makes source
code easier to comprehend and maintain [19], [20]. Devel-
opers, besides being interested in dead code for refactoring
reasons, can be interested in optimization and energy-efficiency
reasons. In other words, developers do not remove dead
code because they are interested in improving source code
comprehensibility and maintainability, but because they
want to make their apps faster and/or lighter (optimization
reason) or less energy-consuming (energy-efficiency reason).
This perspective, that is the one taken in this paper, has
practical implications: if the perspective is of refactoring,
the removal of dead code does not regard external de-
pendencies (e.g., libraries or framework); if the perspective
is of optimization or energy-efficiency, developers need to
remove dead code from external dependencies as well.
Specifically, we adopt in our paper the optimization and
energy-consuming perspectives when detecting and remov-
ing JavaScript dead code. Accordingly, we are not inter-
ested in the benefits, deriving from dead code removal, in
terms of source code comprehensibility and maintainability;
moreover, we remove JavaScript dead code from external
dependencies as well.

A survey among almost 9,300 JavaScript developers
rated code splitting and dead code elimination as the
highest-rated requested features [21]. However, due to the

highly-dynamic and event-based nature of JavaScript, it is
hard to completely and correctly analyze JavaScript source
code [22]. The features of this language pose challenges for
analysis tools, making call-graph construction3 and dead-
code removal especially difficult. To circumvent these chal-
lenges, currently available tools for the detection and re-
moval of JavaScript dead code tend to prevent the use of lan-
guage features (such as reflection) or require the application
to meet certain characteristics. Bundlers like rollup.js and
Webpack perform dead code elimination using a process
known as tree-shaking [23]. This is an effective way of
(partial) dead code elimination. Differently from Lacuna,
tree-shaking requires the use of ECMAScript6 modules,
which are not widely supported at the time of writing [24].
Moreover, it requires developers to meticulously write im-
port and export statements, as otherwise unused functions
might still be imported. The Google Closure Compiler is a
tool that rewrites JavaScript code to improve download and
execution speed. It analyzes the source code, removes dead
code, and rewrites it to a more optimal form [25]. While
the Closure Compiler is effective for dead code elimination,
it requires, differently from Lacuna a specific coding style.
Recently Kupoluyi et al. [26] propose Muzeel, a black-box
approach (to identify and remove dead code functions in
JavaScript libraries) that requires neither knowledge of the
code nor execution traces. To identify dead code functions,
Muzeel performs dynamic analysis through an user’s emu-
lation implemented in a bot (i.e., browser automated tool).
One of the most remarkable differences with Muzeel is
that Lacuna combines source code analysis and dynamic
approaches to identify dead code functions and this allows
saving computation time to their identification.

The call graph representation of JavaScript programs
is the base of many static analysis tools; not only for the
detection of dead code but also to detect security issues [27].
For example, Antal et al. [27] compare five widely adopted
static tools. In addition to (Google) Closure Compiler, the
authors analyze npm cg, WALA, Approximate Call Graph
(ACG), and Type Analyzer for JavaScript tools (TAJS). The
authors observe a variance in the results of these tools (in
terms of number, precision, and type of call edges) and sug-
gest combining their output to get a better trade-off in the
construction of call graphs. Chakraborty et al. [28] identify
different root causes of missed edges in JavaScript static call
graphs and an approach to build call graph representations
of JavaScript programs. The approach works by identifying
the dynamic function data flows relevant to each call edge
missed by the static analysis. In the implementation of
Lacuna, we take advantage of the findings reported in [27],
[28] by combining the results of different static and dynamic
analyzers to obtain a single call graph representation of a
JavaScript program (see Section 2.2.5)

As compared with past research, Lacuna is based on both
static and dynamic analyses, it can be easily extended, and
it can be applied to any JavaScript code base (e.g., without
imposing constraints on the developers’ coding style). In
this paper, we also present the results of an empirical

3. A call graph contains nodes that represent functions of the pro-
gram and edges between nodes if there exists at least one function call
between the corresponding functions.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 4

assessment of the possible run-time overhead of JavaScript
dead code in terms of energy consumption, performance,
network usage, and resource usage in the context of mobile
web apps. The experimental subjects of our assessment were
30 third-party web apps (e.g., amazon.com, wikipedia.com,
and youtube.com) that we have run on a real Android
device.

Running example. In the remainder of this section, we
will adopt the sample program of Listing 1 as a running
example. Three functions compose the example program:
function a (lines 1-5 in Listing 1) is directly invoked from
the global scope (line 16) and thus is reachable; function b
(lines 7-9) is reachable as is called from function a after a
timeout has expired (lines 2-4); function c (lines 11-14) is not
called by any other function and thus is unreachable and
represents dead code.

1 function a(){
2 setTimeout(function(){
3 b();
4 }, 6000);
5 }
6

7 function b(){
8 console.log('6 seconds have passed');
9 }

10

11 function c(){
12 console.log('function c has been called');
13 /* Other potentially heavy statements */
14 }
15

16 a.call();

Listing 1: Running example

2.2 Lacuna

In this section, we describe the inner workings of Lacuna.
The high-level workflow of Lacuna is outlined in Figure 1.

Fig. 1: Workflow of Lacuna

Lacuna takes as input w, the source code of the web
app being analyzed, and l, the desired optimization level.
It is important to note that these are the only input needed
by Lacuna, making it applicable in the context of a wide

spectrum of projects, independently of the used develop-
ment process or company-specific practices. In the first
phase, namely the Parsing phase, JavaScript code inside
w is detected and parsed, and an initial Call Graph (CG)
is built. The results of this phase are provided as input
to the second phase, Analysis, in which multiple analysis
techniques integrated into Lacuna are executed in parallel
and the results of each of them are merged. Finally, the last
phase, Elimination, is executed. In this phase, dead code is
identified and the corresponding JavaScript source code is
optimized according to the optimization level l. The final
output is w′, an optimized version of w where the detected
dead code is removed.

In the following of this section, we first introduce pre-
liminary concepts and then the three phases (i.e., Parsing,
Analysis, and Elimination) behind Lacuna. Finally, we pro-
vide implementation details, including used technologies.

2.2.1 Preliminary concepts
All the algorithms adopted in the parsing, analysis, and
elimination phases operate on call graphs. A call graph
G = (V,E) is a uni-directed graph where the set of nodes
V represents JavaScript functions and the set of edges E
represents the caller-callee relationship between functions.
Specifically, an edge eij between the node i and the node
j in G represents the fact that the function i is able to
call the function j. In the context of JavaScript web apps,
a call graph always contains one root node; such a root
node corresponds to the JavaScript global scope, which is
always present and executed when the web app is run in
the browser.4

In this context, dead code elimination consists of the
removal of all the (connected) components in G that are
isolated from the root node representing the global scope of
the web app. Due to the highly-dynamic and event-based
nature of JavaScript, the identification of the edges of G is
difficult [22], [29], [30]. As explained in Section 2.1, currently
there is no technique for building correct and complete
call graphs for JavaScript without imposing any constraints
to developers or making strong assumptions on the usage
of the language, e.g., having a complete test suite or pro-
hibiting the use of reflection. To overcome this challenge,
Lacuna leverages a set of external analysis techniques, A.
Lacuna considers the included analysis techniques as black-
box components, with the only assumption being that each
analysis technique a ∈ A adheres to the interfaces defined
by Lacuna, meaning that it has to take as input an initial
call graph G0 and the source code of w, and builds its own
call graph Ga, leveraging principles and analysis techniques
of choice for the identification of edges. This allows for the
inclusion of analysis techniques that are either dynamic or
static. In Section 2.2.5, we will show that this restriction is
not limiting and several existing tools have been integrated
into Lacuna with relatively low effort. Each edge in Ga

will be labeled with the analysis technique that identified
it. Thus, in our final call graph, built from the combination
of all graphs Gas, each edge can have multiple labels to take
into account the fact that multiple analysis techniques can
identify the same function call as reachable.

4. http://www.w3schools.com/js/js function invocation.asp

http://www.w3schools.com/js/js_function_invocation.asp

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 5

2.2.2 Parsing

In the parsing phase, Lacuna performs two main proce-
dures, Parse and InitializeCG, both described in Algo-
rithm 1. In the first, given as input the source code of
the web app being analyzed w, Lacuna identifies all the
JavaScript code within it by considering (i) all the JavaScript
code defined in-line in all HTML files, (ii) all JavaScript files
referenced by the HTML code by means of the <script> tag,
and (iii) all the JavaScript files in w that are not referenced
by any <script> tag (lines 1-6 in the Algorithm 1). Once all
the JavaScript code related to w has been identified, Lacuna
parses it into an internal representation of all its statements
to ease subsequent steps (lines 7-16). During this step, to
enable full analysis and optimization of w, all the externally
hosted JavaScript code will be downloaded locally (lines 9-
11). With the assumption that the entirety of the program is
contained in a single example.js file, this first phase is trivial
for our running example of Listing 1.

input : w, source code of the web app to analyze
output: G0, initial call-graph representation of w

1 Function Parse(w) → S:
2 begin
3 Jinline = JavaScript code defined in-line in w
4 Jscript = JavaScript code in files referenced by

<script> tags in w
5 Jfile = JavaScript code in files not referenced by

any <script> tag in w
6 J = Jinline ∪ Jscript ∪ Jfile
7 S = ∅
8 foreach j ∈ J do
9 if j is externally hosted then

10 download j locally
11 end
12 s = statements in j
13 S = S ∪ {s}
14 end
15 return S
16 end

17 Function InitializeCG(S) → G0:
18 begin
19 G0 = (V0 = ∅, E0 = ∅)
20 foreach function declaration f in S do
21 V0 = V0 ∪ {f}
22 end
23 V0 = V0 ∪ {global}
24 return G0

25 end

Algorithm 1: Parsing Algorithm of Lacuna

Afterward, as part of the InitializeCG procedure, an
initial call graph G0 = (V0, E0) is instantiated. To this end,
first, all function definitions within w are retrieved, includ-
ing anonymous and inline functions, and a node for each
identified function declaration is created in G0 (lines 17-
22). Additionally, a starting node representing the JavaScript
global scope is included in G0 to be able to consider also
all those functions directly called from the global scope of
the web app (line 23). The G0 call graph of our running

example contains five nodes, namely: the global node, one
node for each a, b, and c functions, and one node for the
inline function defined in the setTimeout call. G0 does not
contain any edge in this phase, they will be added in the
next phase.

2.2.3 Analysis
Lacuna’s analysis algorithm is presented in Algorithm 2,
once more divided in the Analyze and Merge procedures.
The former takes as input the G0 call graph and produces
as output a set of call graphs H . To do so, it executes each
a ∈ A in parallel on G0 and collects each resulting Ga in H
(lines 1-10 in Algorithm 2). During its execution, each a ∈ A
performs the identification of the edges in G0, leveraging
its own analysis principles. For instance, TAJS relies on
abstract interpretation, which approximates the execution of
a program (and thus the identification of edges) by means of
monotonic functions [31], while ACG employs a field-based
flow analysis technique, which statically approximates the
flow of data [32]. Let us refer to the running example of
Listing 1, and let us assume, for the sake of a simpler
explanation, that among the analysis techniques available
in Lacuna (see Section 2.2.5), only the following three are
executed: static, dynamic, and native calls. Each of the three
techniques is executed independently on G0, producing the
set of call graphs H = {Gstatic, Gdynamic, Gnativecalls}.
These techniques, and the other ones available, are ex-
plained in detail in Section 2.2.5.

After all the analysis techniques have been executed,
during the Merge procedure Lacuna joins the call graph
Ga produced by each analysis technique a into a final call
graph Gw. The strategy applied in this step is the following:
(i) each node in G0 is replicated into Gw (line 13), (ii) for
each Ga ∈ H we add all its edges into Gw (lines 14-17),
(iii) when adding an edge eij produced by a technique a, if
eij is already in Gw, then we just add the label a to eij (lines
18-21). The resulting graph Gw is provided as output.

Figure 2 shows the merged call graph Gw for our run-
ning example after running the three analysis techniques
mentioned in the previous paragraph. Here, the dynamic
analysis identified the call from the global scope to the
function a, the native calls analysis identified the call from
a to the inline function defined in lines 2-4 of Listing 1 (by
considering the call to setTimeout as a direct function call),
and the static analysis identified the call from the body of
the previous function definition to b. No analysis technique
identified any call to function c, so it is unreachable from
global because it has no incoming edges at all.

2.2.4 Elimination
Once all analysis techniques have been executed and the
complete Gw is available, the elimination phase identifies all
the nodes in Gw representing dead code. The algorithm em-
ployed by Lacuna in this phase is presented in Algorithm 3,
constituted by the IdentifyAlive and RemoveDead proce-
dures. The IdentifyAlive procedure identifies alive nodes in
Gw. To do so, it performs a traversal of Gw, starting from
the root node global, while keeping track of Gv , the graph
of visited nodes (lines 1-5 in Algorithm 3). Nodes visited
during this traversal are knowingly alive, as (i) there exists a
path of edges in Gw, representing caller-callee relationships,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 6

input : w, source code of the web app to analyze
G0, initial call-graph representation of w

output: Gw, complete call graph of w

1 Function Analyze(w,G0) → H :
2 begin
3 A = set of analysis techniques in Lacuna
4 H = ∅
5 foreach a ∈ A do
6 Ga = result of execution of a on ⟨w,G0⟩
7 H = H ∪Ga

8 end
9 return H

10 end

11 Function Merge(H , G0) → Gw:
12 begin
13 Gw = (Vw = V0, Ew = ∅)
14 foreach graph Ga ∈ H do
15 foreach edge eij ∈ Ea do
16 if eij /∈ Ew then
17 Ew = Ew ∪ {eij}
18 label(eij) = a
19 else
20 label(eij) = label(eij) ∪ {a}
21 end
22 end
23 end
24 return Gw

25 end

Algorithm 2: Analysis algorithm of Lacuna

input : w, source code of the web app to analyze
Gw, complete call graph of w
l, desired optimization level

output: w′, optimized version of w

1 Function IdentifyAlive(Gw) → Gv :
2 begin
3 Gv = result of Gw traversal starting from global
4 return Gv

5 end

6 Function RemoveDead(w,Gw, Gv, l) → w′:
7 begin
8 w′ = w
9 foreach node n ∈ (Vw − Vl) do

10 retrieve f = function declaration of n
11 if l = 0 then
12 w′(f) = f , no change to f
13 else if l = 1 then
14 w′(f) = flazy , lazy-loading version of f
15 else if l = 2 then
16 w′(f) = fempty , empty-body version of f
17 else if l = 3 then
18 w′ = w′ − {f}
19 end
20 end
21 return w′

22 end

Algorithm 3: Elimination algorithm of Lacuna

from the global node to each of these nodes, and (ii) we
consider the global node as always alive since in JavaScript
the global scope is always present and executed. Hence,
we consider dead code each node n in Gw − Gv , a sub-
graph of all disconnected components unreachable from the
global node. Nodes in this sub-graph represent JavaScript
functions that are not called by any other function (or from
the global scope) according to all the different analysis
techniques applied in the previous phase. For our example
of Listing 1, almost all nodes would be visited during the
traversal of the graph Gw, which starts from the global node.
The sole exception is represented by the node c, which does
not have any incoming edge and thus it is a disconnected
component unreachable from the global node (visible in
Figure 2).

Fig. 2: Call graph of running example constructed by
Lacuna

Afterward, in the RemoveDead procedure, Lacuna re-
considers the source code of the web app w and performs
removal of the JavaScript functions corresponding to nodes
in Gw − Gv (lines 12-22). This step is performed according
to the user-selected optimization level, among four increas-
ingly aggressive choices. Figure 3 provides an example of
code optimized with each level. Available levels are:

• Optimization level 0: does not perform any opti-
mization and leaves the source code of the web app
intact. This may be useful for users to gain insights
into which functions may be dead without actually
removing them. Thus resulting code is the same as
the one given as input (Figure 3a). Information about
dead and alive functions is given in Lacuna log files.

• Optimization level 1: replaces the function body
with a lazy-loading mechanism that will retrieve the
original function body when called, following the
technique suggested by Vazquez et al. [33]. Lazy-
loading effectively is a fall-back that ensures that the
application will not break due to the presence of false
positives. For the lazy-loader to work, a lazy-load
server containing all removed function bodies needs
to be running at all times. The lazy-loading code
will make an HTTP request to the server to fetch the
original function body when needed. An example of
performed optimization is shown in Figure 3b, where
the original body of the dead function c is replaced
by a call to the lazy loader LazyLoad (line 20), that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 7

dynamically fetches the original function body from
the lazy loading server when invoked (lines 12-16).

• Optimization level 2: performs a conservative opti-
mization, removing the function body while keeping
the function declaration. The rationale for this choice
is that in many cases function declarations are used
as expressions in JavaScript and are used in various
contexts in which complete removal would lead to
run-time errors in the browser. Figure 3c shows an
example of code optimized with this level, where the
original function body of c has been removed (line
18) but references to it have been preserved (line 22).

• Optimization level 3: performs an aggressive op-
timization, removing the presumed dead functions
entirely. This elimination strategy maximizes the
benefits of dead code removal. However, it also
maximizes adverse effects in the case of false posi-
tives. In Figure 3d, we provide an example of code
optimized at level 3, where the dead function c has
been removed entirely (line 17), including references
to it (line 22).

After applying optimizations, w′, the optimized version
of the web app provided as input, is returned as output
to the user. With the exception of optimization level 0, all
optimizations are applied on a copy of the original web
app w provided as input. In our example of Listing 1, the
proper optimization, in accordance with the user-defined
optimization level, would be applied only for the function c.

2.2.5 Implementation and used technologies
We developed Lacuna as a Node.js application. To carry out
parsing of the input web app w, we adopt the Esprima [34]
parser. Currently, our implementation comes with eight
ready-to-use analyzers, which have already been integrated
into Lacuna. Each is described in the following:

• Static: a static analyzer based on an approach utiliz-
ing point analysis [35]. It makes use of Esprima, and
builds an approximate call graph, ignoring dynamic
properties and context binding.

• Dynamic: a basic dynamic analyzer for web apps.
Firstly, it instruments the web app by adding log-
ging statements at the beginning of the body of
every function definition (including anonymous and
inline functions). Then, it runs the web app in a
headless browser (namely, in our implementation,
PhantomJS [36]), collects the logging information,
and builds the call graph according to the functions
executed at run-time. It does not provide any input
to the web app while executing it.

• Native calls: an extension of the ACG ana-
lyzer, where we also consider native JavaScript
functions (i.e., Array.prototype.map or Func-
tion.prototype.call) when building the call graph.

• ACG: our implementation of the field-based call
graph construction algorithm proposed by Feldthaus
et al. [32]. It does not consider dynamic properties,
and it does not take arrow functions into account.

• WALA [37]: a static analysis framework for Java
and JavaScript. It builds an intermediate form of the
JavaScript code being analysed, then used as a basis

for pointer analysis and call graph construction. We
wrapped the publicly available implementation [37]
in a Lacuna module.

• TAJS: a dataflow analysis technique for JavaScript
that infers type information and call graphs [38].
TAJS performs abstract interpretation using a cus-
tomization of the monotone framework [39] tailored
to precisely model JavaScript-specific constructs [40].
We wrapped the Java implementation [41] in a La-
cuna module.

• npm cg [42]: npm cg is a tool made to produce
call graphs from JavaScript source code. It comes
with a series of significant limitations: only a sin-
gle JavaScript file is considered at a time and only
named JavaScript functions are taken into considera-
tion (thus no arrow functions or function expressions
are considered). Minor modifications were made to
its implementation to integrate it in Lacuna. The
resulting implementation is available in the Lacuna
repository [13] along with a patch file reflecting all
changes made to the original source code.

• Closure Compiler: the Closure Compiler [25] is
a tool from Google for making JavaScript down-
load and run faster. Instead of compiling from a
source language to machine code, it compiles from
JavaScript to an improved JavaScript where dead
code is removed and live code is minimized. Behind
the curtains, the closure compiler creates a call graph
for its internal representation of the source code.
By default there is no way of outputting this call
graph, therefore some modifications were made to
output the call graph. The resulting implementation
is included in the Lacuna repository [13] along with
a patch file that reflects the changes made to the
original source code.

It is worth mentioning that the Static, Dynamic, WALA
analyzers were already integrated into the previous version
of Lacuna [6]. On the other hand, we integrated ACG, TAJS,
npm cg, and Closure Compiler into Lacuna because these
analyzers were empirically assessed in the comparative
study by Antal et al. [27], who concluded that combining
more analyzers, rather than using them individually, can
lead to more accurate JavaScript call graphs. Finally, we
included Native calls since it is an extension of ACG.

2.2.6 Novel features and extensions

An initial version of Lacuna was presented at the 2018 IEEE
International Conference on Software Analysis, Evolution,
and Reengineering [6]. With respect to the previous paper,
novel features of Lacuna presented in this journal version
include:

• the new subsystem for the removal of dead code
according to four different optimization levels, pre-
viously described in Section 2.2.4;

• the support for externally hosted JavaScript code.
Externally hosted JavaScript files are now down-
loaded locally during the parsing phase, as to enable
a correct and complete analysis of the application
under scrutiny. This enables the analysis of web

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 8

1 /* Original code */
2 function a(){
3 setTimeout(function(){
4 b();
5 }, 6000);
6 }
7

8 function b(){
9 console.log('6 seconds have

passed');
10 }
11

12

13

14

15

16

17

18 function c(){
19 console.log('function c has been

called');
20 /* Other potentially heavy

statements */
21 }
22

23 a.call();

(a)

1 /* Optimization level 1 */
2 function a(){
3 setTimeout(function(){
4 b();
5 }, 6000);
6 }
7

8 function b(){
9 console.log('6 seconds have

passed');
10 }
11

12 function lazyLoad(id, cb) {
13 fetch(”http://127.0.0.1:8125”, {

body: id })
14 .then(r => { return r.text();})
15 .then(cb);
16 }
17

18 function c(){
19 /*lazy−load original function

body*/
20 lazyLoad(”script.js[59:87]”, fd =

eval(fd));
21 }
22

23 a.call();

(b)

1 /* Optimization level 2 */
2 function a(){
3 setTimeout(function(){
4 b();
5 }, 6000);
6 }
7

8 function b(){
9 console.log('6 seconds have

passed');
10 }
11

12

13

14

15

16

17 /* Optimized function c */
18 function c() {}
19

20

21 /* Function reference */
22 let functionCopy = c();

23 a.call();

(c)

1 /* Optimization level 3 */
2 function a(){
3 setTimeout(function(){
4 b();
5 }, 6000);
6 }
7

8 function b(){
9 console.log('6 seconds have

passed');
10 }
11

12

13

15

16

17 /* Function c has been removed */
18

19

20

21 /* Set function references to null */
22 let functionCopy = null;

23 a.call();

(d)

Fig. 3: Optimization levels offered by Lacuna: (a) original example code, (b) after applying optimization level 1, (c) after
applying optimization level 2 and (d) after applying optimization level 3.

apps partially hosted on a public Content Delivery
Network (CDN);

• the support for JavaScript code embedded into non-
JavaScript files—i.e., the HTML files of the web app
under analysis are now considered during the pars-
ing phase, to identify JavaScript code referenced or
embedded by them;

• the integration of five new third-party analysis tech-
niques into Lacuna, namely ACG [32], TAJS [38],
npm cg [42], Native calls, and Closure Compiler [25];

• improvements to the JavaScript call graph represen-
tation. Specifically, in the new version of Lacuna,
each call graph node (i.e., code function) is annotated
with a number of supplemental information (e.g.,
source file name, starting code line, ending code
line) to allow for easier integration of the output of
different analysis techniques;

• the new version of Lacuna is made available as a
stand-alone NodeJS module, which can be imported
into any NodeJS project. This allows for easier inte-
gration of Lacuna into a development pipeline.

2.2.7 Correctness, Completeness, and Accuracy of Lacuna

We empirically assessed Lacuna in terms of correctness,
completeness, and accuracy of the detected JavaScript dead
functions. To do so, we replicated our previous experi-
ment [6] on a wider dataset and by considering more
instances of Lacuna—each instance either uses a single
analyzer to build JavaScript call graphs or a combination
of analyzers. The dataset of this experiment consists of 39
web apps developed by independent web developers in
the context of the TodoMVC project—as compared to our
previous experiment on Lacuna [6], we included 10 more
web apps. Later, for each web app, we built the ground
truth (i.e., we determined which functions are actually dead

or alive), executed each instance of Lacuna on it, and then
gathered the functions detected as dead by that instance.
In total, we ran 127 different instances of Lacuna, each
instance integrated one to seven analyzers—in our previous
experiment on Lacuna [6], we ran three instances of Lacuna
only: Static, Dynamic, and their combination. The analyzers
we executed in this replicated experiment are those listed
in Section 2.2.5 with the exception of WALA.5 Finally, we
quantified the correctness, completeness, and accuracy of
the detected JavaScript dead functions by using the precision,
recall, and F-score measures from the Information Retrieval
(IR) field [43]. The results of this experiment suggest that:
(i) combining two or more analyzers leads to improvements
in terms of correctness, completeness, and accuracy of the
detected JavaScript dead functions and (ii) the best instance
of Lacuna is the one based on the joint use of Dynamic
and TAJS. This instance allows achieving the highest ac-
curacy level (average F-score = 87.9%) so well balancing
correctness (average precision = 82.5%) and completeness
(average recall = 97.2%). While F-score is a trade-off measure
between precision and recall, the average values of precision
and recall reported above can be interpreted as follows:
on average, 82.5% of the functions this instance of Lacuna
detects as dead are correct (i.e., on average, only 17.5% of
the functions are wrongly detected as dead); on the other
hand, this instance of Lacuna detects 97.2% of all the dead
functions available in a web app (i.e., on average, it misses
less than 3% of the dead functions available in a web app). It
is important to note that having a precision of 82.5% might
be acceptable for many projects, but it might be not enough

5. When executing the WALA analyzer on the selected web apps,
it turned out to be too slow—the execution times of WALA were
even greater than 20 minutes for most of the web apps. Therefore,
we discarded WALA (including any combination with other analyzers)
from this experiment.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 9

for some other projects (e.g., those where the incorrectly
removed dead code performs critical functionalities of the
web app); in the latter case we suggest to the users of
Lacuna to adopt optimization level 1, where the body of
incorrectly-removed functions is lazily loaded and executed
from a server [33]. We also suggest the users of Lacuna
to experiment with other combinations of analyzers, which
might lead to a precision-recall combination which is better
fitting the requirements of their project and organization.
For example, in our experiment the combination of the
Dynamic, Closure Compiler npm cg, TAJS, and ACG lead
to a higher precision (88.1%) than the one obtained via the
Dynamic-TAJS combination (82.5%); however, the higher
precision came with a high cost in terms of recall, which was
only 54.3%, thus leading to a much lower F-score (64.8%).
Thanks to the extensible architecture of Lacuna, in those
cases where already-existing analyzers do not perform well,
developers can still integrate in Lacuna a new analyzer with
their own project- or organization-specific algorithms for
building more accurate call graphs. Nevertheless, at the time
of writing, as we will report in Section 2.2.8, the aggregated
F-score values achieved by Lacuna with the Dynamic-TAJS
combination are the highest when compared to those of
other state-of-the-art approaches.

TABLE 1: Average values regarding the correctness,
completeness, and accuracy of the old Lacuna version—the
values are those reported in the previous Lacuna paper [6]

Variable Static Dynamic Static + Dynamic

Precision 56% 57% 63%
Recall 49% 77% 40%
F-score 49% 64% 47%

Finally, to give an idea about the impact of the improve-
ments to Lacuna, we summarize in Table 1, the average val-
ues of the F-score, precision, and recall measures reported in
the previous Lacuna paper [6], where three instances of the
old Lacuna version were studied (i.e., Static, Dynamic, and
their combination). It is easy to grasp that the new Lacuna
version, based on the combination of Dynamic and TAJS,
lead to improvements in terms of correctness, completeness,
and accuracy of the detected JavaScript dead functions. For
details about the replicated experiment briefly described in
this section, we redirect the interested reader to our online
appendix [44].

2.2.8 External Evaluation of Lacuna
Before focusing on the assessment of the run-time overhead
of JavaScript dead code, it is important to be reasonably
confident that Lacuna is the right instrument for the detec-
tion and removal of JavaScript dead code. We carried out a
small-scale experiment to evaluate Lacuna against state-of-
the-art tools that are currently able to detect (and remove, in
some cases) JavaScript dead code. In this section, we report
the results of such an experiment.

We first identify an initial set of analysis tools that are
currently able to detect JavaScript dead code. This step
is carried out by: (i) performing a lightweight search on
Google Scholar, and (ii) by analysing the scientific publi-
cations cited and citing the studies we already identified as
related to our work (see Section 6). This activity leads to

the following 6 promising tools: Qiong et al. [45], UFFRe-
mover [33], JSLIM [46], Muzeel [47], Goel et al. [48], Google
LightHouse6. Three researchers assessed the applicability of
each potentially-usable tool (e.g., a functioning implementa-
tion of the tool must be publicly available). This analysis led
to the identification of two tools that are usable in our study:
UFFRemover and Muzeel. For the sake of space, the details
of such analysis are included in the replication package of
the study. The main distinguishing factors of the selected
tools with respect to Lacuna are: (i) both UFFRemover and
Muzeel detect dead code via dynamic analysis, whereas
Lacuna can combine static and dynamic analyses; (ii) UF-
FRemover performs a preliminary static analysis to identify
required JavaScript modules and to instrument them for
logging the JavaScript functions executed during the dy-
namic analysis; (iii) the dynamic analysis of UFFRemover
can execute various parts of the web app under analysis by
executing test cases (if available) or via (user-defined) inter-
action scripts; (iv) Muzeel complements the initial loading of
the web app with the emulation of all possible interactions
within the web app (interaction points are identified during
a preliminary pass via dynamic analysis); (v) Lacuna is a
meta-tool, i.e., it allows the integration of additional 3rd-
party analyzers in its pipeline; and (vi) Lacuna is the only
tool supporting different optimization levels, where one of
them – level 1 – is the one provided by UFFRemover [33].

We execute the UFFRemover and Muzeel tools on all the
39 TodoMVC web apps we used for the internal evaluation
of Lacuna; for the sake of completeness, we execute two
different configurations of UFFRemover, where the first one
focusses exclusively on the initial load of the analysed web
app (we call it UFFRemover (L)) and the second one is con-
sidering (scripted) interaction scenarios covering all func-
tionalities of the analysed web app (we call it UFFRemover
(I)). Finally, we consider the outputs of the three tools (i.e.,
Muzeel, UFFRemover (L), and UFFRemover (I)) over all 39
TodoMVC apps, we compute their precision, recall, and F-
score, and finally we compare them against the same metrics
we collected for the Dynamic-TAJS instance of Lacuna (see
Section 2.2.7).

TABLE 2: Descriptive statistics for the external evaluation
of Lacuna against Muzeel, UFFRem. (L), and UFFRem. (I).

Tool Min. Max. Median Mean SD CV

Precision
Lacuna 0.207 0.992 0.870 0.825 0.181 21.988
Muzeel 0 1 0.757 0.632 0.346 54.763
UFFRem. (L) 0.200 1 0.965 0.877 0.178 20.313
UFFRem. (I) 0.421 1 1 0.949 0.143 15.113

Recall
Lacuna 0.688 1 1 0.972 0.065 6.721
Muzeel 0 1 0.749 0.685 0.216 31.552
UFFRem. (L) 0.053 1 1 0.833 0.287 34.494
UFFRem. (I) 0.053 1 0.975 0.791 0.302 38.146

F-score
Lacuna 0.344 0.996 0.918 0.879 0.138 15.655
Muzeel 0 0.924 0.714 0.594 0.302 50.831
UFFRem. (L) 0.101 1 0.891 0.801 0.247 30.904
UFFRem. (I) 0.101 1 0.955 0.810 0.255 31.430

6. https://developer.chrome.com/docs/lighthouse/performance/
unused-javascript

https://developer.chrome.com/docs/lighthouse/performance/unused-javascript
https://developer.chrome.com/docs/lighthouse/performance/unused-javascript

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 10

Table 2 shows the descriptive statistics for the external
evaluation of Lacuna against Muzeel, UFFRemover (L),
and UFFRemover (I). UFFRemover (I) is the tool with the
highest precision (mean=0.949). This result is expected since
the interaction scripts we developed for interacting with
the subjects are covering all primary functionalities of the
analysed TodoMVC web apps; this result is also highlighted
by the fact that the median precision of UFFRemover (I)
is 1, i.e., the tool correctly identifies all dead functions
as dead for at least 50% of the subjects. UFFRemover (L)
(mean=0.877) and Lacuna (mean=0.825) perform similarly
in terms of average precision; we conjecture that this result
is primarily due to the fact that UFFRemover’s detection
algorithm executed on only the page loading phase of the
subject is the same as the Dynamic analyzer of Lacuna (we
trace the small difference in terms of precision to the fact
that the two tools use a different library for parsing the
JavaScript code, which might have lead to some functions
not been detected by the parser).

Lacuna is the tool with the highest recall (mean=0.972),
followed by UFFRemover (L) (mean=0.833), UFFRemover
(I) (mean=0.791), and Muzeel (mean=0.685). As described
in Section 2.2.7, having a high recall is fundamental for
our experiment on its overhead at run-time (see Section 3)
since a high recall makes us reasonably confident that (on
average) Lacuna is able to detect 97.2% of all dead functions
in a given web app. We conjecture that Lacuna is performing
better than all the other tools since our Dynamic-TAJS
instance of Lacuna includes also a static analysis component
in it, allowing our tool to reach parts of the Javascript call
graph that is not reached via either (i) the pure dynamic
analysis performed by UFFRemover (L) and UFFRemover
(I) or (ii) the dynamic analysis combined with the traversal
of the event listeners statically-identified by Muzeel.

When looking at the F-score combined metric, La-
cuna is again the tool performing better (mean=0.879),
followed by UFFRemover (I) (mean=0.810), UFFRemover
(L) (mean=0.801), and finally Muzeel (mean=0.594). The
fact that Lacuna is the most accurate tool overall (i.e., it
has the highest F-score) makes us reasonably confident in
using it for detecting and removing JavaScript dead code in
the subjects used when assessing the run-time overhead of
JavaScript dead code (see next section).

3 EXPERIMENT ON THE RUN-TIME OVERHEAD OF
JAVASCRIPT DEAD CODE

In this section, we describe the main aspects of the design of
the experiment on the run-time overhead of JavaScript dead
code. This experiment has been designed and conducted
by following well-known guidelines for experimentation
and data analysis in empirical software engineering [49],
[50], [51], [52], [53]. We refer the reader to the replication
package of the experiment [14] for further details on the
experiment execution, used tools, and collected data. The
replication package contains all the information for indepen-
dent verification and replication of the study, namely: (i) the
Python scripts for executing the experiment, (ii) the raw data
measures collected during the execution of the experiment,
and (iii) the R scripts for analysing the collected data, and
(iv) a detailed guide for replicating the experiment.

3.1 Goal and Research Questions

In this context, we use Lacuna to eliminate dead code from
the subjects of the experiment according to the four opti-
mization levels of Lacuna (see Section 2.2.4). By following
the GQM (Goal-Question-Metric) template [54], the goal of
this experiment is formulated as:

Analyze the presence of JavaScript dead code for the
purpose of empirically assessing its run-time overhead
with respect to energy consumption, performance,
network usage, and resources usage from the point
of view of researchers, developers, and users in the
context of mobile web apps.

The goal presented above is achieved by answering the
four research questions listed below. The main motivation
for having the four research questions is to investigate the
overall overhead that JavaScript dead code can have on
mobile web apps at run-time. We define a research question
for each of the main perspectives under which having a
run-time overhead might be relevant either for the user
experience or for the (technical, ecological) sustainability of
mobile web apps.

RQ1. What is the overhead of JavaScript dead code on
the energy consumption of mobile web apps?

It is known that mobile web apps consume different
amounts of energy while being loaded [55], [56] and that
improving their energy efficiency might lead to consistent
savings in terms of electricity [57]. So, answering RQ1 will
help both web developers and researchers understand to
what extent removing JavaScript dead code might be a
useful instrument for improving mobile web apps from the
perspective of energy consumption.

RQ2. What is the overhead of JavaScript dead code on
the performance of mobile web apps?

For what concerns RQ2, the performance of mobile web
apps is a crucial factor for their success. Users expect mobile
web apps to load within a reasonable time [58]; having
mobile web apps with poor performance can potentially
impact profits and/or lead to users’ abandonment, espe-
cially on mobile devices where hardware and connectivity
are constrained [59]. By answering RQ2 we aim to objec-
tively assess to what extent the removal of JavaScript dead
code might support (i) web developers in improving the
performance of their mobile web apps and (ii) researchers in
better understanding the relationship between the presence
of (dead) JavaScript code and the performance of mobile
web apps.

RQ3. What is the overhead of JavaScript dead code on
the network usage of mobile web apps?

It has been empirically confirmed that networking is the
most relevant bottleneck for mobile web apps [5]. Also, the
network conditions under which a mobile device operates
can be limited depending on factors such as the network
coverage at a specific location, the connectivity subscription
of the user, the type of cellular network supported by the
mobile device (e.g., 4G, 5G), etc. So, reducing the amount
of network traffic required by a mobile web app to fully
load is a relevant factor for improving its performance or

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 11

even its loading itself. By answering RQ3 we aim at getting
empirical evidence about the impact of JavaScript dead code
and the network traffic required to load a mobile web app.
Such results support both web developers and researchers in
understanding if removing JavaScript dead code is a viable
tool for reducing the requirements of mobile web apps in
terms of network traffic.

RQ4. What is the overhead of JavaScript dead code on
the resources usage of mobile web apps?

Mobile devices tend to have limited hardware resources,
such as CPUs, GPUs, and memory. Also, the browser engine
shares such resources with other apps running on the user’s
device and, when such resources are getting abused, the
device might become slow and the operating system might
even decide to forcibly shutdown some of the running apps
to free resources for the other ones. By answering RQ4
we aim to empirically assess to what extent the presence
of JavaScript dead code impacts the usage of hardware
resources of the mobile device. Our results can support web
developers and researchers in understanding if removing
JavaScript dead code might help to reduce the number of
resources needed to run a mobile web app, thus leading to
an overall better user experience for their users.

3.2 Subjects Selection and Planning

For this experiment, we consider a total of 30 web apps
that have been independently developed by third-party web
developers. The 30 web apps are divided into two different
families: 15 in-the-lab web apps and 15 in-the-wild web apps.

The 15 in-the-lab subjects were randomly sampled from
the TodoMVC project. This project aims to help developers
to choose the MV* framework more suitable for struc-
turing and organizing their JavaScript Web apps. To that
end, TodoMVC consists of different implementations of the
“same” Todo web app, each of which uses a different MV*
framework, so that developers can inspect the codebase and
then compare the different MV* frameworks. The Todo app
is a manager for to-do lists, which includes the following
features: (i) adding a to-do item, (ii) removing a to-do item,
(ii) modifying an existing to-do item, and (iv) marking a to-
do item as completed. We refer to each sampled web app as
the name of the used MV* framework. The sampled in-the-
lab subjects are listed in Table 3.

Despite the in-the-lab web apps allowing us to study
a large and heterogeneous set of MV* frameworks that real-
world JavaScript Web apps can rely on, they share the
same functionalities. This might negatively influence the
external validity of the experiment, making our results less
generalizable. In order to mitigate this potential bias, we
decided to complement the 15 in-the-lab subjects with 15 ad-
ditional in-the-wild subjects. The subjects are sampled from
the Tranco list [12], which aggregates the rankings from the
lists provided by Alexa, Umbrella, Majestic, and Quantcast.
Starting from the first 150 web apps in the Tranco list, we
iteratively download and manually analyze each candidate
web app against a set of selection criteria we defined a
priori, reaching a final set of 15 web apps satisfying all the
selection criteria. The selection criteria, their rationale, and
the results of their application are reported below:

S1 – The web app should not redirect to another domain. The
rationale for this criterion is that there are mobile web apps
that redirect the user to a different domain, such as Apple
(aaplimg.com → apple.com) and Twitter (t.co → twit-
ter.com); these pages could redirect to duplicate domains
within the list or domains that are not part of the Tranco list
at all. The application of S1 led to the identification of 24 web
apps redirecting to another domain, which were discarded
from the initial 150 web apps.
S2 – The web app must be accessible without user authentication.
The rationale for this criterion is that there are mobile web
apps in which the actual page content is available for au-
thenticated users only, such as Twitter and Instagram. After
applying this criterion we identified 8 web apps requiring
user authentication, leading to a set of 118 potentially-usable
web apps.
S3 – Lacuna must be able to successfully remove JavaScript dead
code from the web app without errors. The rationale for this
criterion is that we need to be sure that for each subject
of the experiment, we can successfully run Lacuna to obtain
its dead-code-free version for all Lacuna optimization levels.
When applying Lacuna to the 118 selected web apps we en-
countered two main situations where it was not successful:
(i) 96 web apps included external JavaScript scripts we did
not manage to properly download locally on our server (i.e.,
some scripts were imported dynamically and the browser
blocked their request due to Cross-Origin Resource Sharing
errors, the HTML code of the web app was referencing
scripts which were not available anymore at the referenced
URLs, etc.) and (ii) for 7 web apps TAJS failed since at the
time of executing the experiment it did not support the
following ES6 features: the let keyword, arrow functions,
and template literals.

The 15 selected in-the-wild subjects resulting from this
procedure are listed in Table 3. These subjects are heteroge-
neous from different perspectives (e.g., application domain,
functionalities, size, amount of JavaScript code), making
them good candidates for complementing the in-the-lab
subjects and achieving more generalizable results in our
experiment.

Once we obtain the final set of 30 individual subjects, we
apply Lacuna four times to each of them, each time with a
different optimization level (OL-0 as the baseline, then OL-
1, OL-2, OL-3). This leads to have four versions for each
web apps. In Table 3, we report the number of functions
detected as dead by Lacuna when it is executed on each
web app—it is worth recalling that such a number is the
same across the different Lacuna optimization levels.

Regardless of the web app and optimization level, we
configured Lacuna so that it combined the results of two
third-party analysis techniques: Dynamic and TAJS. This
design choice was taken empirically. That is, we performed
a preparatory experiment thanks to which we concluded
that the best configuration of Lacuna was the one based on
the joint use of Dynamic and TAJS (see Section 2.2.7).

3.3 Variables and Statistical Hypotheses

This experiment has the same independent variable for all
research questions, i.e., the Lacuna optimization level applied
to each of the subjects. According to the currently available

http://aaplimg.com
https://www.apple.com/
https://t.co
https://twitter.com
https://twitter.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 12

TABLE 3: Number of dead functions detected by Lacuna
for each subject.

Subject # Dead Functions

In-the-lab subjects
angularjs require 32
backbone 542
canjs 492
dijon 410
dojo 411
enyo backbone 6
gwt 17
jquery 420
jsblocks 459
knockoutjs require 35
mithril 55
polymer 6
reagent 3,357
vanillajs 59
vue 266

In-the-wild subjects
apache.org 437
aws.amazon.com 409
m.youtube.com 1,812
nl.godaddy.com 19
stackexchange.com 457
stackoverflow.com 491
www.amazon.com 144
www.bbc.com 345
www.booking.com 1,390
www.buzzfeed.com 353
www.mozilla.org 436
www.office.com 616
www.paypal.com 639
www.theguardian.com 16
www.wikipedia.org 46

dead code elimination procedure of Lacuna described in
Section 2.2.4, this variable has four levels: OL-0, OL-1, OL-2,
and OL-4.

All dependent variables are measured in the time frame
between the first GET request issued by the browser to
the server hosting the currently-measured web app and the
web app’s page load time. The dependent variables of this
experiment are described below:

• Energy (RQ1): the energy consumed by the mobile
device to load the web app in mJ (milli-joule). En-
ergy values are computed by following a sampling-
based approach widely used in software engineering
studies [60], [61], [62], [63], that is: (i) sampling
the instantaneous power consumed by the browser
app running on the Android device (in microWatts)
(ii) applying the E = P × t formula, where P is
the measured power and t is the page load time
of the web app (see next dependent variable), and
(iii) solving the integral of P over t (in our case by
applying the trapezoidal method [64]).

• Page load time (RQ2): the timestamp in milliseconds
(ms) in which the web app is fully loaded in the
browser [65]. More specifically, page load time is
defined as the time from the start of a user-initiated
page request (the initial GET request issued by the
browser in our case) to the time the entire page
content is loaded, including all dependent resources
like CSS stylesheets, JavaScript code, or images; this
time is collected by recording the timestamp in which
the load event is fired by the browser engine.

• First contentful paint (RQ2): the timestamp in mil-
liseconds when the browser first renders any text,

image, non-white canvas, or SVG of the web app [65].
Intuitively, it is the first time when the user can start
consuming the content of the web app. According
to the Paint Timing W3C specification [66], the First
contentful paint metric and the First paint one (see
below) complement Page load time since they pro-
vide a user-oriented assessment of the performance
of the web app.

• First paint (RQ2): the timestamp in milliseconds
when the browser renders the first pixels to the
screen of the mobile device, rendering anything that
is visually different from what was on the screen
prior to navigation [65]. Intuitively, it is the time
when the user is aware that “something is happen-
ing” in the browser after they decided to navigate to
the URL of the mobile web app.

• HTTP requests (RQ3): the number of HTTP(S) re-
quests issued by the browser engine while loading
the currently-measured web app. We include this
variable since our RQ3 is concerning the overhead
of JavaScript dead code in terms of network usage,
mainly due to the additional network traffic caused
by either the additional JavaScript files retrieved by
the web app (even if they are not executed since they
contain dead code).

• Transferred bytes (RQ3): the sum of the size, in kilo-
bytes (Kb), of the payloads of all HTTP(S) requests
issued by the browser engine while loading the
currently-measured web app. Similarly to the pre-
vious variable, we are measuring the number of
transferred bytes in order to quantify how much ad-
ditional (and unused) JavaScript code is transferred
from the servers to the web app when dealing with
JavaScript dead code.

• CPU usage (RQ4): the average of the percentage
of CPU consumed while loading the currently-
measured web app. We include this variable since
RQ4 deals with the overhead imposed by JavaScript
dead code in terms of computational resources,
which are typically the processor, GPU, and mem-
ory (see the description of the next two dependent
variables).

• GPU usage (RQ4): the average of the percentage
of GPU consumed while loading the currently-
measured web app. Similarly to the previous vari-
able, we include this variable in order to measure
what is the added overhead of JavaScript dead code
in terms of GPU usage.

• Memory usage (RQ4): the average amount of mem-
ory consumed by the Android device while loading
the currently-measured web app in megabytes (Mb).
Similarly to CPU usage, we include this variable
in order to measure what is the memory overhead
imposed by JavaScript dead code.

For each dependent variable listed above and each
family of subjects (i.e., in-the-lab vs. in-the-wild ones), we
formulate the following parameterized null hypothesis:

H0var : There is no statistically significant difference in
the values of the dependent variable var (e.g.,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 13

energy, page load time, etc.) between the opti-
mization levels of Lacuna.

The alternative hypothesis for H0var (i.e., H1var) admits
that there is a statistically significant difference. For exam-
ple, if H0energy is rejected, we can accept the alternative
hypothesis H1energy stating that there is a statistically signif-
icant difference in the values of energy between the optimization
levels of Lacuna.

3.4 Experiment execution
In Figure 4, we present the measurement infrastructure
for running the experiment. The experiment involves two
main hardware nodes: a laptop acting as a base station
and an Android smartphone for running and measuring the
subjects. The laptop has an Intel Core i7-4710HQ processor,
12Gb of memory, and runs Ubuntu 20.04 as the operating
system. The Android device is an LG G2 smartphone with
a Qualcomm MSM8974 Snapdragon 800 processor, 2Gb of
memory, a 5.2” LCD display, and running Android 6.0.1
operating system. The main rationale for using two sep-
arate hardware nodes is to keep the Android device as
lightweight as possible, so as to not influence the mea-
surements [67], [68]. As shown in the right-hand side of
the figure, the Android device is running only two apps:
(i) the Google Chrome browser, which is used for loading
the web apps and (ii) Trepn, a software-based profiler for
Android devices. Trepn is widely used in empirical studies
on energy-efficient software [69], [70], [71] and it has been
reported as sufficiently accurate with respect to hardware
power measurement (e.g., the Monsoon Power Monitor),
with an error margin of 99% [72]. Trepn supports also the
collection of the CPU, GPU, and memory usage.

Base station (laptop) Android device

Measures

Google
Chrome

Trepn

Android
logs

commands / log dataADB + monkeyrunner

Web server

Android Runner

mitmproxy

Trepn

Subjects

PerfumeJS

Network
logs

HTTP
traffic

Fig. 4: Measurement infrastructure

The laptop and the Android device are connected to
the same WiFi network. To reduce as much as possible the
influence of the network conditions on the experiment, the
WiFi network does not have any other connected devices.

All four versions of each of the 30 subjects of the exper-
iment are hosted on the laptop and served via a dedicated
Web server. To collect the values of the HTTP requests and
Transferred bytes dependent variables, all HTTP(S) traffic
between the smartphone and the laptop passes through
an instance of mitmproxy [73], which records all HTTP(S)
requests and locally stores them the form of network logs.

The experiment is orchestrated via Android Runner, a
framework for defining and executing measurement-based
experiments targeting Android (web) apps [67]. Android
Runner allows us to define the experiment in a descriptive
manner via a JSON file and then it automatically takes care
of the complete execution of the experiment. Specifically,
for each experiment run, Android Runner uses the Android
Debug Bridge tool (ADB [74]) to interact with the smart-
phone, e.g., to collect Android system logs, to activate/deac-
tivate the profiling features of Trepn, to instruct the Google
Chrome app on the smartphone to load the currently-
measured subject, to enable/disable the USB charging of the
smartphone, etc.. For this experiment, we use two plugins
of the Android Runner tool: (i) Trepn, for collecting data
via the Trepn profiler and (ii) PerfumeJS, to collect web
performance metrics via the Perfume.js library [75], such as
the page load time, first contentful paint, and first paint.

In order to mitigate possible threats to the internal valid-
ity of the experiment and to facilitate its replicability, we
take the following precautions while executing it: (i) the
measurement of each experiment trial (i.e., a subject-OL
pair) is repeated 20 times, leading to a total of 2,400 indi-
vidual runs (i.e., 4 treatments x 30 subjects x 20 repetitions),
(ii) the order of execution of the 2,400 experiment runs is
randomized, (iii) between each run the smartphone and the
laptop remain idle for 2 minutes so to take into account tail
energy usage [76], (iv) the Chrome app is cleared before each
run so to reset its cache, persisted data, and configuration,
and (v) the USB charging of the smartphone is disabled
during the execution of each run.

3.5 Data Analysis

We first perform a data exploration step where we inspect
and get an overview of the collected data via box plots and
summary tables. In this step, we also check if the assump-
tion that in-the-lab and in-the-wild subjects exhibit different
values holds for the considered metrics. Since normality of
the collected data is the underlying assumption of para-
metric statistical tests [49], as part of the data exploration
step, we check if the distribution of the data collected for
each dependent variable follows a normal distribution, both
globally and between in-the-lab and in-the-wild subjects.
We assess normality by means of three complementary
methods: (i) by applying the Shapiro-Wilk statistical test
with α = 0.05, (ii) by producing and visually analysing
the density plots of every dependent variable, and (iii) by
producing and visually analysing QQ-plots.

We anticipate that all the collected data do not follow
a normal distribution. Based on this fact, in our statistical
analysis, we apply non-parametric statistical tests and effect
size measures. Specifically, for each dependent variable and
each family of subjects (i.e., in-the-lab and in-the-wild) we do
the following:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 14

1) We apply the Kruskal-Wallis test (with α = 0.05), a
non-parametric test for testing whether the collected
measures come from populations with identical distri-
butions; the application of this test gives an initial in-
dication about whether the Lacuna optimization levels
lead to statistically-different differences in terms of, e.g.,
energy consumption, memory usage, etc.

2) If the p-value of the Kruskal-Wallis test is not greater
than α, then we assess the magnitude of the detected
differences by applying the Eta squared effect size
measure based on the H-statistic [77]. Eta squared is
a non-parametric effect size measure compatible with
the Kruskal-Wallis statistical test [77]. The values of the
obtained effect size measures are interpreted according
to threshold values commonly used in the literature,
namely: η2 < 0.06 (small effect - S), 0.06 ≤ η2 < 0.14
(moderate effect - M), and η2 ≥ 0.14 (large effect - L).

3) Having a statistically significant result for the Kruskal-
Wallis test also allows us to investigate which pairs of
optimization level exhibit statistically-significant differ-
ences. We do so by applying the Dunn Test as post-hoc
analysis [78] to each pair of optimization level. Since
we are applying multiple statistical tests, to reduce the
chance of Type-I error we adjust the obtained p-values
via the Benjamini-Hochberg correction [79].

4 RESULTS

In this section, we present the results of the experiment.

4.1 Data exploration

Table 4 gives an overview of the measures we collected for
all dependent variables across all in-the-wild and in-the-lab
subjects. We observe that the measures collected for in-the-
lab subjects tend to have different central values (i.e., mean
and median) with respect to those collected from in-the-wild
subjects; this phenomenon is especially prominent for page
load time, first contentful paint, first paint, HTTP requests,
transferred bytes, CPU usage, and memory usage. Also,
when the central values are different, in-the-wild subjects
tend to consistently perform worse with respect to in-the-
lab subjects; for example, the average page load time of in-
the-wild subjects is 4.229s, whereas it is 1.137s for in-the-lab
subjects. The differences in the obtained measures for in-
the-lab and in-the-wild subjects further validate our design
choice of considering the type of subject as a blocking factor
for our experiment. Indeed, we expected such a kind of
difference since the purpose and context in which those two
families of subjects are developed are completely different;
in-the-lab subjects have a relatively small size (both in terms
of provided features and source code) and are developed
on a voluntary basis, whereas in-the-wild subjects are fully-
fledged web apps developed either by (i) companies like
Google or Amazon or (ii) large-scale organizations like the
Wikimedia Foundation.

The collected data for each dependent variable exhibits
values within the expected ranges. For example, energy
consumption is between 343.39mJ and 1,819.67mJ, which
are acceptable values if we consider that the average page
load time of the measured subjects is relatively short (i.e.,

2.6 seconds). Overall, there is a high relative variance in
the data, especially for network-related variables (i.e., HTTP
requests and transferred bytes) for in-the-wild subjects and
memory usage for all subjects, but also for performance-
related metrics (i.e., page load time, first contentful paint,
and first paint) for in-the-wild subjects. Such variance is not
a surprise if we consider that the time span in which mea-
sures are collected is relatively short (it raises the chances of
having outlier values) and that we are including in-the-wild
subjects in the experiment.

TABLE 4: Descriptive statistics of the collected measures for
all dependent variables (SD=standard deviation,

CV=coefficient of variation)

Variable Min. Max. Median Mean SD CV

All subjects
Energy (mJ) 343.49 1,819.67 1,379.37 1,387.88 104.07 7.50
Page load
time (ms)

454.00 17,857.00 1,897.00 2,683.57 2,425.06 90.37

First cont.
paint (ms)

629.90 7,623.20 1,484 1,584.67 764.29 48.23

First paint
(ms)

561.60 7,623.20 1,241.35 1,453.87 734.56 50.52

HTTP
requests

5 102 13 20.27 18.15 89.52

Transferred
bytes (Kb)

35.26 2,535.35 291.58 415.70 412.02 99.11

CPU usage
(%)

52.18 93.14 59.06 59.73 3.41 5.71

GPU usage
(%)

10.14 35.34 24.1 23.86 2.77 11.59

Memory
usage (Mb)

1,580.40 1,766.24 1,668.47 1,669.63 30.45 1.82

In-the-lab subjects
Energy (mJ) 1,203.56 1,819.67 1,377.34 1,386.13 102.04 7.36
Page load
time (ms)

454.00 12,357 837.00 1,137.36 835.32 73.44

First cont.
paint (ms)

629.90 6,842.70 989.40 1,156.65 616.72 53.32

First paint
(ms)

561.60 4,455 923.40 969.26 372.22 38.40

HTTP
requests

8 42 14 15.87 7.76 48.91

Transferred
bytes (Kb)

35.26 2,535.35 212.56 398.77 496.67 124.55

CPU usage
(%)

52.18 71.43 58.41 58.58 1.69 2.88

GPU usage
(%)

14.44 30.75 24.81 24.57 2.53 10.31

Memory
usage (Mb)

1,580.40 1,766.24 1,657.84 1,658.74 26.82 1.62

In-the-wild subjects
Energy (mJ) 343.49 1,749.92 1,381.92 1,389.63 106.07 7.63
Page load
time (ms)

1,045.00 17,857.00 3,660.50 4,229.78 2,506.69 59.26

First cont.
paint (ms)

718.70 7,623.20 1,849.95 2,012.69 649.40 32.27

First paint
(ms)

730.50 7,623.20 1,799.70 1,938.49 686.28 35.40

HTTP
requests

5 102 13 24.67 23.66 95.91

Transferred
bytes (Kb)

100.43 1,353.06 342.10 432.64 304 70.27

CPU usage
(%)

53.88 93.14 60.02 60.89 4.21 6.91

GPU usage
(%)

10.14 35.34 23.43 23.15 2.81 12.12

Memory
usage (Mb)

1,591.47 1,764.23 1,678.79 1,680.53 29.96 1.78

The Shapiro-Wilk normality test reveals that all the data
exhibit a non-normal distribution. This result is further
confirmed visually via density plots and QQ-plots (all avail-
able in the replication package of this study). Since the
normality of the data is one of the assumptions of the
ANOVA statistical test, we resort to the Kruskal-Wallis test
as a non-parametric statistical test in the remainder of our
data analysis procedure.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 15

In the next sections, we analyze the data related to each
research question of the experiment.

4.2 Overhead on Energy Consumption (RQ1)

As shown on the left-hand side of Figure 5, eliminating
JavaScript dead code from the in-the-lab subjects results
in slightly more energy-efficient web apps. Indeed, the
median energy consumption of the original web apps (OL-
0 in Lacuna) is 1,406.35mJ, against 1,367.59mJ, 1,374.34mJ,
and 1,370.83mJ for the other Lacuna optimization levels.
However, this result is not statistically significant (p-value:
0.268, see the first row of Table 5).

500

1000

1500

OL−
0

OL−
1

OL−
2

OL−
3

E
ne

rg
y

(m
J)

In−the−lab subjects

500

1000

1500

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 5: Energy consumed by the mobile device (the red
dashed line represents the median value for the original

web apps (OL-0))

The results are similar for in-the-wild subjects, with the
exception that the median energy consumption remains
approximately the same for the OL-1 and OL-3 Lacuna
optimization levels. The energy consumption of the OL-2
optimization level is even slightly higher than that of the
others, but still without statistical significance; we speculate
that this result is due to the intrinsic variability of the
experiment execution.

Overall, the obtained p-values do not allow us to reject
H0energy for both in-the-lab and in-the-wild subjects, so we
cannot claim that different Lacuna optimization levels have
an impact on the energy consumption of in-the-lab or in-
the-wild web apps.

4.3 Overhead on Performance (RQ2)

Eliminating JavaScript dead code from the web apps leads
to an improvement in the page load time (see Figure 6.
This result is statistically significant for both in-the-lab and
in-the-wild subjects, with a p-value of 4.7x10−9 for in-the-
lab subjects and a p-value of 0.039 for in-the-wild subjects
(see Table 5). Given the obtained p-values, we can reject
H0page load time for both families of web apps, allowing us
to claim that different Lacuna optimization levels have an
impact on the page load time of web apps (both in-the-lab
and in-the-wild). However, our effect size estimation reveals

TABLE 5: Results of the statistical analysis for all RQs – the
(*) symbol denotes cases with statistically-significant

differences among optimization levels

Variable Subject type P-value Effect size

Overhead on energy consumption (RQ1)

Energy (mJ) Lab 0.268 -
Wild 0.768 -

Overhead on performance (RQ2)

Page load time (ms) Lab 4.7x10−9 (*) 0.032 (S)
Wild 0.039 (*) 0.004 (S)

First cont. paint (ms) Lab 0.654 -
Wild 0.428 -

First paint (ms) Lab 0.461 -
Wild 0.907 -

Overhead on network usage (RQ3)

HTTP requests Lab 1.48x10−40 (*) 0.155 (S)
Wild 0.937 -

Transferred
bytes (Kb)

Lab 2x10−14 (*) 0.054 (S)
Wild 2.19x10−20 (*) 0.077 (M)

Overhead on resources usage (RQ4)

CPU usage (%) Lab 0.0552 -
Wild 135x10−9 (*) 0.027 (S)

GPU usage (%) Lab 0.002 (*) 0.011 (S)
Wild 0.206 -

Memory usage (Mb) Lab 0.337 -
Wild 0.0159 (*) 0.006 (S)

0

5000

10000

15000

OL−
0

OL−
1

OL−
2

OL−
3

P
ag

e
lo

ad
 ti

m
e

(m
s)

In−the−lab subjects

0

5000

10000

15000

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 6: Page load time of the web apps

that the effect of JavaScript dead code elimination on page
load time is small (S) for both of them (see Table 5).

Having a statistically-significant result for the Kruskal-
Wallis test on page load times means that we can investi-
gate which Lacuna optimization level leads to statistically-
significant differences with respect to the original web app
and the other optimization levels. As shown in the first
two rows in Table 6, completely eliminating the JavaScript
functions identified as dead code (i.e., OL-3) leads to a
statistically-significant difference for both in-the-lab and in-
the-wild subjects. This difference is also visually highlighted
in the box plots in Figure 6, where OL-3 tends to have
lower values with respect to the others. Other statistically-
significant pairs of optimization levels are OL-1→OL-3 and
OL-2→OL-3 for in-the-lab subjects; this result can be seen
as an indication that, in the context of in-the-lab subjects,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 16

having an approach with different strategies for eliminating
JavaScript dead code paid off in terms of page load time and
that having a more comprehensive (but risky) strategy for
dead code elimination leads to significantly better results in
terms of page load time.

2000

4000

6000

OL−
0

OL−
1

OL−
2

OL−
3

F
irs

t c
on

t.
pa

in
t (

m
s)

In−the−lab subjects

2000

4000

6000

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 7: First contentful paint of the web apps

Differently from page load time, the measures of first
contentful paint (Figure 7) and first paint (Figure 8) do not
show any noticeable improvement across the various La-
cuna optimization levels. As shown in Table 5, we obtained
p-values higher than our significance threshold for both first
contentful paint and first paint, thus we cannot reject the
corresponding null hypotheses for both families of subjects.
That is, we cannot claim that different Lacuna optimization
levels impact differently the time of the first contentful paint
and first paint of web apps (both in-the-lab and in-the-wild
subjects).

2000

4000

6000

OL−
0

OL−
1

OL−
2

OL−
3

F
irs

t p
ai

nt
 (

m
s)

In−the−lab subjects

2000

4000

6000

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 8: First paint of the web apps

4.4 Overhead on Network Usage (RQ3)

As shown in Figure 9 and Table 5, the elimination of
JavaScript dead code leads to noticeable (and statistically
significant, p-value: 1.48x10−40) differences in terms of the

number of HTTP requests only for in-the-lab subjects. More-
over, by looking at Table 6, it can be noticed that such differ-
ences are statistically significant for all pairs involving the
OL-3 optimization level of Lacuna. In any case, the observed
effect size is 0.155, i.e., small. The situation is different for
in-the-wild subjects, where we do not observe any relevant
difference among the various Lacuna optimization levels.
Summing up, only for in-the-lab subjects (not for in-the-
wild ones) we can reject H0HTTP requests stating that the
number of HTTP requests is not the same across different
Lacuna optimization levels.

25

50

75

100

OL−
0

OL−
1

OL−
2

OL−
3

H
T

T
P

 r
eq

ue
st

s

In−the−lab subjects

25

50

75

100

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 9: Number of HTTP requests

The amount of transferred bytes is considerably lesser
when the various Lacuna optimization levels are applied
to both in-the-lab and in-the-wild subjects (see Figure 10).
The differences in the transferred bytes are statistically
significant for both in-the-lab subjects (p-value: 2x10−14,
effect size: 0.054 – small) and in-the-wild subjects (p-value:
2.19x10−20, effect size: 0.077 – moderate). So, we can reject
H0transferred bytes for both families of subjects, allowing us
to claim that different Lacuna optimization levels have an
impact on the transferred bytes from the server to the client
web apps (both in-the-lab and in-the-wild). As shown in
Table 6, the observed differences are statistically significant
for almost all pairs of Lacuna optimization levels.

4.5 Overhead on Resources Usage (RQ4)

The CPU usage remains stable for in-the-lab subjects (left-
hand side of Figure 11), with an average close to 58% and
a p-value of 0.552. Differently, the CPU usage for in-the-
wild subjects is reduced when applying Lacuna (p-value:
135x10−9), with statistically-significant results for all pairs
of optimization levels, but not for the OL-0→OL-1 one. The
obtained p-values tell us that we cannot reject H0cpu usage

for in-the-lab subjects, but we can reject such a null hy-
pothesis for in-the-wild subjects—i.e., there is a difference
in the percentage of CPU usage across different Lacuna
optimization levels when considering in-the-wild subjects.

The scenario is more stable when considering GPU usage
(see Figure 12, with an average close to 25% and 24%
for in-the-lab and in-the-wild subjects, respectively. The

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 17

TABLE 6: Pairwise comparison across Lacuna optimization levels for variables with statistically-significant differences -
the (*) symbol denotes cases with statistically-significant differences (with Benjamini-Hochberg correction)

Variable Subject type RQ OL-0 → OL-1 OL-0 → OL-2 OL-0 → OL-3 OL-1 → OL-2 OL-1 → OL-3 OL-2 → OL-3

Page load time (ms) Lab RQ2 0.367 0.119 1.21x10−8 (*) 0.464 1.97−6 (*) 4.45x10−4 (*)
Page load time (ms) Wild RQ2 0.691 0.737 0.049 (*) 0.737 0.114 0.063
HTTP requests Lab RQ3 0.205 0.163 8.97x10−24 (*) 0.813 4.48x10−30 (*) 5.63x10−31 (*)
Transferred bytes (Kb) Lab RQ3 0.028 (*) 1.67x10−4 (*) 1.45x10−14 (*) 0.109 4.66x10−8 (*) 1.01x10−4 (*)
Transferred bytes (Kb) Wild RQ3 1.80x10−4 (*) 7.44x10−14 (*) 1.24x10−17 (*) 1.80x10−4 (*) 1.71x10−6 (*) 0.258
CPU usage (%) Wild RQ4 0.462 0.031 (*) 1.26x10−5 (*) 5.99x10−3 (*) 5.72x10−7 (*) 0.027 (*)
GPU usage (%) Lab RQ4 0.201 0.061 0.197 0.433 0.012 (*) 1.44x10−3 (*)
Memory usage (Mb) Wild RQ4 0.871 0.532 0.021 (*) 0.534 0.021 (*) 0.106

0

500

1000

1500

2000

2500

OL−
0

OL−
1

OL−
2

OL−
3

Tr
an

sf
er

re
d

by
te

s
(K

b)

In−the−lab subjects

0

500

1000

1500

2000

2500

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 10: Bytes transferred over the network

50

60

70

80

90

100

OL−
0

OL−
1

OL−
2

OL−
3

C
P

U
 u

sa
ge

 (
%

)

In−the−lab subjects

50

60

70

80

90

100

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 11: CPU usage of the mobile device

application of the Kruskal-Wallis test reveals a statistically-
significant difference only for in-the-lab subjects (p-value:
0.002 in Table 5) and the OL-1→OL-3 and the OL-2→OL-3
pairs of optimization levels. So, we can reject H0gpu usage

for in-the-lab web apps (i.e., different Lacuna optimization
levels impact differently the percentage of GPU usage), but
we cannot reject the same hypothesis for in-the-wild ones.

Memory usage remains relatively stable for in-the-lab
subjects (see Figure 13), whereas it exhibits an observable
improvement when considering in-the-wild subjects, with
a statistically-relevant difference (p-value: 0.0159 in the last

25

50

75

100

OL−
0

OL−
1

OL−
2

OL−
3

G
P

U
 u

sa
ge

 (
%

)

In−the−lab subjects

25

50

75

100

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 12: GPU usage of the mobile device

row of Table 5), further confirmed for the OL-0→OL-3 and
the OL-1→OL-3 pairs of optimization levels (see the last
row of Table 6). Given the obtained p-values, we cannot
reject H0memory usage for in-the-wild web apps (i.e., there
is a difference in the memory usage of the web apps across
different Lacuna optimization levels), but we can reject the
same null hypothesis for in-the-lab web apps.

1600

1650

1700

1750

OL−
0

OL−
1

OL−
2

OL−
3

M
em

or
y

us
ag

e
(M

b)

In−the−lab subjects

1600

1650

1700

1750

OL−
0

OL−
1

OL−
2

OL−
3

In−the−wild subjects

Fig. 13: Memory usage of the mobile device

Despite the observed statistical differences, the effect size
for CPU usage, GPU usage, and memory usage remains
small (see Table 5).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 18

4.6 Impact of Dead Function Removal

In the following, we present the results of a further
analysis to study the potential correlations between the
number of dead functions detected by Lacuna and the im-
provements due to the elimination of these functions (i.e., by
applying OL-1, OL-2, OL-3, respectively) in terms of energy
consumption, performance, network usage, and resources usage.
To do so, we run a correlation test between the number of
dead functions detected by Lacuna and the saving achieved
after applying each Lacuna optimization level (except for
OL-0) with respect to each measure listed in Section 3.3. In
particular, given a measure and an optimization level (ex-
cept for OL-0), the saving on each subject is computed by av-
eraging the 20 measurements for OL-0 (i.e., no optimization)
and then subtracting the average of the 20 measurements
for the considered optimization level. We use the Kendall
correlation coefficient because to apply such a test it is not
required that the data are normally distributed. Moreover,
by averaging the data, we meet the data independence
assumption. If the p-value of the correlation test is not
greater than α = 0.05, then there is a statistically-significant
correlation. In this case, we then report the Kendall correla-
tion coefficient (Tau), which provides an indication of how
strong a statistically-significant correlation is. The values
of this correlation coefficient are interpreted according to
threshold values commonly used in the literature, namely:
|τ | < 0.1 (no correlation), 0.1 ≤ |τ | < 0.4 (weak correlation -
W), 0.4 ≤ |τ | < 0.7 (moderate correlation - M), and |τ | ≥ 0.7
(strong correlation - S).

In Table 7, we show the results of this further anal-
ysis. For most of the measures, we cannot show there
are statistically-significant correlations with respect to the
number of dead functions Lacuna detected. Among the
most important outcomes, there is that in terms of net-
work usage. In particular, we find positive, moderate, and
statistically-significant correlations between the number of
dead functions and the number of transferred bytes for
all optimization levels (p-values ranging from 2.94x10−6

to 4.11x10−4, correlation coefficients ranging from 0.456 to
0.603). That is, regardless of the Lacuna optimization level,
when the number of dead functions increases, the saving on
transferred bytes tends to increase as well.

The other statistically-significant correlations regard the
saving in terms of performance (i.e., page load time) and
resources usage (i.e., CPU usage). In particular, we have a
positive and statistically-significant correlation between the
number of dead functions and saving on page load time
when applying OL-3 (p-value: 0.009, correlation coefficient:
0.336 – weak). That is, as the number of dead functions
removed with OL-3 increases, the saving on page load time
tends to increase. Finally, we find a positive, weak, and
statistically-significant correlation between the number of
dead functions and saving on CPU usage when applying
OL-2 (p-value: 0.022, correlation coefficient: 0.295). That
is, the more the number of dead functions removed after
applying OL-2, the higher the saving on CPU usage.
5 DISCUSSION

In this section, we discuss the obtained results in terms
of implications from the perspectives of users, researchers,
and web developers. We conclude the section by presenting

TABLE 7: Results of the further analysis – the (*) symbol
denotes statistically-significant correlations

Variable Optimization level P-value Corr. Coeff.

Number of dead functions and saving in terms of energy consumption

Energy (mJ)
OL-1 0.239 -
OL-2 0.318 -
OL-3 0.830 -

Number of dead functions and saving in terms of performance

Page load time (ms)
OL-1 0.475 -
OL-2 0.125 -
OL-3 0.009 (*) 0.336 (W)

First cont. paint (ms)
OL-1 0.432 -
OL-2 0.335 -
OL-3 0.775 -

First paint (ms)
OL-1 0.187 -
OL-2 0.134 -
OL-3 0.972 -

Number of dead functions and saving in terms of network usage

HTTP requests
OL-1 0.312 -
OL-2 0.808 -
OL-3 0.781 -

Transferred bytes (Kb)
OL-1 4.11x10−4 (*) 0.456 (M)
OL-2 2.94x10−6 (*) 0.603 (M)
OL-3 8.16x10−6 (*) 0.575 (M)

Number of dead functions and saving in terms of resources usage

CPU usage (%)
OL-1 0.886 -
OL-2 0.022 (*) 0.295 (W)
OL-3 0.225 -

GPU usage (%)
OL-1 0.643 -
OL-2 0.592 -
OL-3 0.116 -

Memory usage (Mb)
OL-1 0.803 -
OL-2 0.108 -
OL-3 0.125 -

possible threats that could affect the validity of the obtained
results, including countermeasures we applied for mitigat-
ing them.

5.1 Implications
We observed that page load time is significantly lower when
JavaScript dead code is completely removed (i.e., Lacuna
optimization level 3) whatever the family of web apps is.
Taking into account that users tend to abandon a web
app when it takes too much time to load pages [59], we
can postulate that our outcome has practical implications
from the perspective of users. For example, users could
appreciate the page load time of mobile web apps without
dead code, thus positively affecting the user experience7 of
these web apps. This outcome has also implications from the
perspective of researchers because they could be interested in
studying to what extent the user experience is affected by
the presence, or not, of dead code in a given mobile web
app. From the web developer perspective, it could be relevant
to integrate a tool, like Lacuna, in the user experience design
process since the presence of dead code could significantly
affect page load time, possibly affecting user experience.

Regardless of the family of web apps, the amount of
transferred bytes from the server to the client is signifi-
cantly less when the various Lacuna optimization levels are
applied, especially when using optimization level 3. That is,

7. The overall experience of a person using a mobile web app, a
website, or a computer application, especially in terms of how easy
or pleasing it is to use.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 19

we provide evidence that removing JavaScript dead code
is effective in reducing the network transfer of web apps.
We can postulate that this outcome is relevant for users and
web developers since transferring fewer bytes is definitely
valuable when the network is either a scarce resource (e.g.,
due to low available bandwidth) or underpaid/limited sub-
scription plans (i.e., for 4G/5G connectivity). Web developers
could find this outcome interesting also because a small earn
in the transferring of bytes from the Cloud to a single client
reflects in a large earn (in terms of transferred bytes) when
millions of clients are connected to the Cloud. Researchers
could be interested in studying to what extent the men-
tioned earn affects the end-to-end energy consumption, i.e.,
the total energy needed to transfer bytes from the Cloud to
the clients, including the consumption of network devices
(e.g., switches and routers). This proposed line of research
aims at deepening the results of RQ1, where we could not
find evidence that the removal of JavaScript dead code
affects the energy consumption of mobile devices (i.e., when
considering the client side only).

As for the number of HTTP requests and CPU, GPU,
and memory usage, we observed mixed outcomes between
in-the-lab and in-the-wild web apps—e.g., we found that
different Lacuna optimization levels have an impact on
the number of HTTP requests when considering in-the-
lab web apps, but not when considering in-the-wild ones.
This suggests the possible existence of moderating variables
that can diminish or hamper the impact of the Lacuna
optimization levels on HTTP requests and CPU, GPU, and
memory usage. This could be relevant to researchers, who
could plan and execute further studies on such moderating
variables (also by exploiting our replication package [14]).

Finally, by manually inspecting the source code of the
subjects, we conjecture that the emerging results for HTTP
requests and transferred bytes are due to the fact that web
developers tend to statically import and declare JavaScript
scripts in their web apps. Specifically, the vast majority of
imported/declared scripts are still requested by the browser
engine, even though they contain less source code and
have a smaller transfer size (due to the dead code being
eliminated). This observation highlights the importance of
the bundling technique, where the number of HTTP re-
quests made to the server is reduced by merging multiple
JavaScript files; we advise web developers to use existing tools
for bundling the JavaScript code of their web apps, such as
Webpack [80], gulp-bundle [81], and Browserify [82].

5.2 Threats to Validity

We discuss the threats to validity according to Cook and
Campbell’s categorization [83].

5.2.1 Construct validity

We mitigated potential construct validity threats by follow-
ing well-known guidelines for experimentation in empiri-
cal software engineering [49], [50], [51], [52], [53] and by
defining all details related to the design of the experiment
(e.g., the goal, research questions, tools, variables, statistical,
analysis procedures) before starting its execution.

5.2.2 Conclusion validity
Since all the collected data do not follow a normal dis-
tribution, we utilized non-parametric tests. Additionally,
we perform the Benjamini-Hochberg correction procedure
to account for potential Type-I errors. Finally, we provide
a publicly available replication package for independent
verification of our findings.

5.2.3 Internal validity
A possible threat to the internal validity of the experiment
comes from the “maturation” of test subjects, leading them
to behave differently across different experiment runs. To
mitigate this possible threat, the following precautions have
been adopted: (i) the measurement for each experiment
trial (i.e., a subject-OL pair) has been repeated 20 times;
(ii) the order of execution of the experiment runs has been
randomized; (iii) the Chrome app has been cleared and
reset before each run so to clean its cache, persisted data,
and configuration; (iv) the USB charging of the smartphone
is disabled during the execution of each run; (v) between
each run the smartphone and the laptop remain idle for
2 minutes to take into account for tail energy usage [76].
Another potential threat to the internal validity comes from
the usage of a software power profiler rather than a hard-
ware measurement tool, potentially introducing errors in the
measurements. However, the accuracy of the Trepn power
profiler has been reported to be close to 99% [72]

5.2.4 External validity
To ensure that our experimental subjects are representative
of real-world web apps, in-the-lab subjects have been com-
plemented with in-the-wild subjects. The latter have been
sampled from the Tranco list, and constitute a sample of
popular real-world websites that are heterogeneous from
different perspectives (e.g., application domain, function-
alities, size). At the same time, the sample of in-the-lab
subjects constitutes a varied set of JavaScript development
frameworks. Another potential threat to the external valid-
ity comes from the usage of a single smartphone device,
equipped with an older Android version, for the experi-
ment execution, potentially harming the generalizability of
obtained results. This was a forced choice, as the Trepn
power profiler does not support newer Android versions.
Nonetheless, Trepn is widely used in empirical studies on
energy-efficient software [69], [70], [71] which provides con-
fidence in the generalizability of its measurements. Finally,
the results of our experiment are obtained by integrating
into Lacuna two analyzers: Dynamic and TAJS. The exper-
iment results cannot hold if we use other analyzers for call
graph constructions. However, this is true for any choice of
analyzer/s to be integrated into Lacuna. Since the experi-
ment on the run-time overhead of JavaScript dead code is
very expensive—i.e., 4 optimization levels x 30 subjects x 20
repetitions, in total 2,400 experiment runs—, it is unfeasible
to test all the 127 configurations of Lacuna (resulting from
the combinations of one to seven analyzers). Therefore, we
considered just one Lacuna configuration (i.e., the one based
on the joint use of Dynamic and TAJS), suggested by the
results of the preparatory experiment (see Section 2.2.7).
This choice, taken empirically, should allow for maximizing
the benefits resulting from the removal of the dead code.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 20

6 RELATED WORK

Dead code (also known as unused code [17], unreachable
code [20], and lava flow [16]) has been included in several
code-smell catalogs [17], [16], [18] since it is claimed to have
negative effects on source code comprehensibility and main-
tainability [20]. Researchers have investigated the claimed
effects of the dead code. For example, Romano et al. [84]
conducted a controlled experiment where part of the partici-
pants had to comprehend and then maintain a Java codebase
containing dead code, while another part had to do the same
in a codebase deprived of dead code. The authors found
that dead code hinders source code comprehensibility, while
they could not demonstrate the negative effects of dead code
on source code maintainability. Later, Romano et al. [19]
replicated that experiment three times. The results confirm
that dead code penalizes source code comprehensibility;
also, they found that dead code negatively affects source
code maintainability when developers work on unfamiliar
source code. The most important difference between our
paper and those introduced just before is that we focus
here on the detection and elimination of JavaScript dead
code from web apps, while these papers mostly focused
on detection and the study the effect of this smell on Java
desktop apps. Eder et al. [8] conducted a case study on the
modifications to dead methods in an industrial web app
developed in .NET. Differently from us, the authors only
considered dynamic information to detect dead code. In
particular, Eder et al. monitored the execution of methods
in a given time frame, and those methods not executed
in a given time frame were considered as dead. In their
case study, these authors observed that 48% of the modi-
fications to dead methods were unnecessary (e.g., because
dead methods were removed later). A similar finding was
reported by Cassieri et al. [85] in the context of Java desktop
apps hosted on GitHub. This study is different from ours
because the authors studied the presence of dead code in
Java desktop apps and how developers deal with dead code
(e.g., modify and remove it in software evolution tasks).

Researchers have also proposed dead code detection
techniques to support developers who aim to remove dead
code for refactoring reasons. Chen [86] et al. proposed a data
model for C++ software repositories supporting reachability
analysis and dead code detection. Fard and Mesbah [20]
presented JSNOSE, a metric-based technique for detecting
smells, including dead code, in JavaScript code. JSNOSE
marks a code block as dead if the EXEC metric or the RCH
one is equal to zero. The EXEC metric relies on dynamic
analysis to count the times a given code block is executed,
while the RCH metric measures, by leveraging static analy-
sis, the reachability of a given code block. Boomsma et al. [7]
proposed a dynamic technique for detecting dead code
(dead files, in particular) in web apps written in PHP. This
technique monitors the execution of a web app in a given
time span to determine the usage of PHP files. A file is
deemed as dead if it is not used in that period. The au-
thors applied their technique on a subsystem, allowing the
developers to remove 2,740 dead files (i.e., about 30% of the
subsystem files). Romano et al. [87] proposed DUM, a static
technique for detecting dead code (dead methods, in partic-
ular) in Java desktop apps, which is based on a call-graph

representation where nodes correspond to methods while
directed edges correspond to caller-callee relationships. The
authors implemented DUM in an Eclipse plug-in, named
DUM-Tool [88]. Romano and Scanniello [89] explored the
use of RTA, an algorithm for call graph construction that
is known to be fast and well approximate virtual method
calls [90], to detect dead code (dead method, in particular) in
Java desktop apps. To this end, they developed a tool, DCF,
and evaluated its performance against the one of JTomb-
stone, CodePro AnalytiX, and DUM-Tool. The results of
this evaluation show that DCF outperforms the other tools
in terms of precision and f-measure of the detected dead
methods. As for the recall, DCF is comparable to DUM-Tool.
Alabwaini et al. [91] proposed a model, based on program
slicing, for automatically removing dead code. In particular,
they applied a program slicing technique to identify the
slices of a program—any code involved in a slice was con-
sidered alive. The slices were then merged and any code not
involved in a slice was discarded because it was considered
dead. The research discussed just before approaches dead
code from a refactoring perspective, while we are interested
to evaluate the run-time overhead of JavaScript dead code in
terms of energy consumption, performance, network usage,
and resource usage in the context of web apps.

Researchers have also investigated dead code detection
by taking an optimization perspective. Sunitha and Ku-
mar [92] proposed a technique that combines copy prop-
agation and dead code elimination by using hash-based
value numbering to avoid executing unnecessary code—
e.g., instructions that compute values not used in any ex-
ecution path starting from them. Karer et al. [93] conceived
a dead code elimination technique for Java apps based on
two steps. First, they converted Java source code into an SSA
form—in this form, each variable is assigned exactly once
statically. Second, they identified DU-chains to find vari-
ables with a definition but without any use during program
execution. The found variables are then removed since they
are considered dead. Kim et al. [94] proposed a technique to
efficiently remove dead code in SSA forms, hence obtaining
faster and lighter Java bytecode. Wang et al. [95] conceived
a framework for detecting dead code based on the LLVM
compiler infrastructure. The framework consists of three
steps. It first translates the source code of the program
into an LLVM intermediate representation, then a symbolic
execution technique is applied to generate test cases. Finally,
the framework combines static and dynamic slicing—the
program is analyzed dynamically through the generated test
cases—to detect dead code (in particular, dead statements).
The proposed framework can be applied to programs writ-
ten in any programming language as long as it is supported
by the LLVM compiler infrastructure. The authors showed
that, on five C programs, their framework detected, on
average, about 94% of dead statements. Differently from
these papers, we present here evidence also about how
the presence of JavaScript dead code impacts web apps on
Android devices in terms of energy efficiency, loading time,
number and payload of HTTP requests, CPU, and mem-
ory usage. Vázquez et al. [33] proposed a technique called
UFFRemover, based on dynamic analysis, to aid developers
in identifying and then removing dead functions from the
dependencies of JavaScript apps. On the other hand, Lacuna

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 21

supports both static and dynamic analyses and it is also
extensible. Vázquez et al. first gathered execution traces of
the app being analyzed—for this purpose, the app can be
run via its tests in the development environment or via user-
app interactions in the production environment—so as to
identify the functions that do not belong to any execution
trace. These functions are then suggested to developers for
removal because they are deemed dead. The authors applied
their technique to 22 JavaScript apps and found that around
70% of the functions in the dependencies were dead.

In summary, we contribute in this paper to advance the
state of the art on JavaScript dead code identification and
elimination in several ways. We can summarize our most
important contributions as follows: (i) we designed and im-
plemented an extensible approach for JavaScript dead code
elimination on which third-party analysis techniques can be
reused and integrated and (ii) we provide evidence about
how JavaScript dead code impacts web apps on Android
devices in terms of energy efficiency (slight positive impact),
loading time (statistically-significant positive impact), num-
ber and payload of HTTP requests (statistically-significant
positive impact), CPU and memory usage (mixed results).

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present Lacuna, an approach for automat-
ically eliminating JavaScript dead code from web apps. By
building on Lacuna, we conducted an empirical evaluation
of the run-time overhead of JavaScript dead code in terms
of energy consumption, performance, network usage, and
resource usage in the context of 30 third-party web apps
running on a real Android smartphone. The obtained results
lead to relevant implications for users, researchers, and web
developers.

As future work, we are planning to extend the formal-
ization of the CG so as to distinguish (and treat differently)
between edges that are surely navigated at run-time (e.g.,
those identified via dynamic analysis) and those that are
navigated with a certain probability (e.g., those identified
by a static analyzer). We will also expand the CG with the
notion of JavaScript module to distinguish between internal,
imported, and exported functions and treat them differently
while building the CG. Finally, we will integrate additional
analysis techniques and tools into Lacuna.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No
871342 “uDEVOPS”.

We would like to thank Christos Petalotis and Luka
Krumpak, both students of the Vrije Universiteit Amster-
dam, for their invaluable help in the external evaluation of
Lacuna.

REFERENCES

[1] (2022, Mar) The State of JavaScript Survey. [Accessed 9. Mar.
2022]. [Online]. Available: https://stateofjs.com

[2] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “Hybrid mobile
apps in the google play store: An exploratory investigation,” in
2015 2nd ACM international conference on mobile software engineering
and systems. IEEE, 2015, pp. 56–59.

[3] G. L. Scoccia and M. Autili, “Web frameworks for desktop apps:
An exploratory study,” in Proceedings of the 14th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measure-
ment, 2020, pp. 1–6.

[4] H. Xi, “Dead code elimination through dependent types,” in
International Symposium on Practical Aspects of Declarative Languages.
Springer, 1999, pp. 228–242.

[5] J. Nejati and A. Balasubramanian, “An in-depth study of mobile
browser performance,” in Proceedings of the 25th International Con-
ference on World Wide Web, 2016, pp. 1305–1315.

[6] N. G. Obbink, I. Malavolta, G. L. Scoccia, and P. Lago, “An
extensible approach for taming the challenges of javascript dead
code elimination,” in 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering. IEEE, 2018, pp.
291–401.

[7] H. Boomsma, B. V. Hostnet, and H. G. Gross, “Dead code elimi-
nation for web systems written in php: Lessons learned from an
industry case,” in Proceedings of the 28th International Conference on
Software Maintenance. IEEE, 2012, pp. 511–515.

[8] S. Eder, M. Junker, E. Jurgens, B. Hauptmann, R. Vaas, and K.-
H. Prommer, “How much does unused code matter for mainte-
nance?” in 2012 34th International Conference on Software Engineer-
ing. IEEE, 2012, pp. 1102–1111.

[9] (2021, Dec) Desktop vs Mobile vs Tablet Market Share
Worldwide | Statcounter Global Stats. [Accessed 15.
Dec. 2021]. [Online]. Available: https://gs.statcounter.com/
platform-market-share/desktop-mobile-tablet

[10] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie, “Measurement
and analysis of mobile web cache performance,” in Proceedings of
the 24th International Conference on World Wide Web, 2015, pp. 691–
701.

[11] (2022, Oct.) TodoMVC. [Accessed 27. Jul. 2022]. [Online].
Available: https://todomvc.com

[12] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen, “Tranco: A research-oriented top sites ranking
hardened against manipulation,” arXiv preprint arXiv:1806.01156,
2018.

[13] S2-group. (2022, Jul.) Lacuna implementation. [Accessed 27. Jul.
2022]. [Online]. Available: https://github.com/S2-group/Lacuna

[14] ——. (2022, Jul.) Lacuna evaluation. [Accessed 27. Jul.
2022]. [Online]. Available: https://github.com/S2-group/
Lacuna-evaluation

[15] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[16] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mow-
bray, AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis, 1st ed. New York, NY, USA: John Wiley & Sons, Inc., 1998.

[17] W. C. Wake, Refactoring Workbook, 1st ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[18] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2008.

[19] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk, “A
multi-study investigation into dead code,” IEEE Trans. Softw. Eng.,
2018, in press.

[20] A. M. Fard and A. Mesbah, “Jsnose: Detecting javascript code
smells,” in Proceedings of International Working Conference on Source
Code Analysis and Manipulation. IEEE, 2013, pp. 116–125.

[21] S. Greif, “The state of javascript 2017,” https://stateofjs.com/
2017/introduction, 2017.

[22] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of
the dynamic behavior of javascript programs,” in ACM Sigplan
Notices, vol. 45, no. 6. ACM, 2010, pp. 1–12.

[23] (2022) Tree shaking. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Glossary/Tree shaking

[24] (2022) Es6 modules support. [Online]. Available: https://caniuse.
com/?search=ES6%20modules

[25] (2022, Mar.) Closure Compiler - Google Developers. [Accessed 27.
Jul. 2022]. [Online]. Available: https://developers.google.com/
closure/compiler

[26] J. Kupoluyi, M. Chaqfeh, M. Varvello, R. Coke, W. Hashmi,
L. Subramanian, and Y. Zaki, “Muzeel: Assessing the impact of
javascript dead code elimination on mobile web performance,” in

https://stateofjs.com
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://todomvc.com
https://github.com/S2-group/Lacuna
https://github.com/S2-group/Lacuna-evaluation
https://github.com/S2-group/Lacuna-evaluation
https://stateofjs.com/2017/introduction
https://stateofjs.com/2017/introduction
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://caniuse.com/?search=ES6%20modules
https://caniuse.com/?search=ES6%20modules
https://developers.google.com/closure/compiler
https://developers.google.com/closure/compiler

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 22

Proceedings of the ACM Internet Measurement Conference. ACM,
2022, p. 335–348.

[27] G. Antal, P. Hegedus, Z. Tóth, R. Ferenc, and T. Gyimóthy, “[re-
search paper] static javascript call graphs: A comparative study,”
in Proceedings of IEEE International Working Conference on Source
Code Analysis and Manipulation, 2018, pp. 177–186.

[28] M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassan-
shahi, “Automatic root cause quantification for missing edges in
javascript call graphs,” in Proceedings of European Conference on
Object-Oriented Programming, K. Ali and J. Vitek, Eds., vol. 222,
2022, pp. 3:1–3:28.

[29] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged informa-
tion flow for javascript,” ACM Sigplan Notices, vol. 44, no. 6, pp.
50–62, 2009.

[30] S. H. Jensen, P. A. Jonsson, and A. Moller, “Remedying the eval
that men do,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis. ACM, 2012, pp. 34–44.

[31] P. Cousot and R. Cousot, “Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints,” in Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, 1977,
pp. 238–252.

[32] A. Feldthaus, M. Schafer, M. Sridharan, J. Dolby, and F. Tip,
“Efficient construction of approximate call graphs for javascript
ide services,” in 2013 35th International Conference on Software
Engineering. IEEE, 2013, pp. 752–761.

[33] H. C. Vázquez, A. Bergel, S. Vidal, J. D. Pace, and C. Marcos,
“Slimming javascript applications: An approach for removing un-
used functions from javascript libraries,” Information and software
technology, vol. 107, pp. 18–29, 2019.

[34] (2021, Jun.) Esprima. [Accessed 27. Jul. 2022]. [Online]. Available:
https://esprima.org

[35] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip, “Tool-
supported refactoring for javascript,” in Proceedings of the 2011
ACM international conference on Object oriented programming systems
languages and applications, 2011, pp. 119–138.

[36] (2020, Feb.) PhantomJS - Scriptable Headless Browser. [Accessed
27. Jul. 2022]. [Online]. Available: https://phantomjs.org

[37] wala. (2022, Jul.) WALA. [Accessed 27. Jul. 2022]. [Online].
Available: https://github.com/wala/WALA

[38] S. H. Jensen, A. Moller, and P. Thiemann, “Type analysis for
javascript,” in International Static Analysis Symposium. Springer,
2009, pp. 238–255.

[39] J. B. Kam and J. D. Ullman, “Monotone data flow analysis frame-
works,” Acta informatica, vol. 7, no. 3, pp. 305–317, 1977.

[40] S. H. Jensen, A. Møller, and P. Thiemann, “Interprocedural analy-
sis with lazy propagation,” in International Static Analysis Sympo-
sium. Springer, 2010, pp. 320–339.

[41] cs-au dk. (2022, Jul.) TAJS. [Accessed 27. Jul. 2022]. [Online].
Available: https://github.com/cs-au-dk/TAJS

[42] gunar. (2022, Jul.) callgraph. [Accessed 27. Jul. 2022]. [Online].
Available: https://github.com/gunar/callgraph

[43] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to
Information Retrieval. New York, NY, USA: Cambridge University
Press, 2008.

[44] S2-group. (2022, Jul.) Online appendix. [Accessed 27. Jul.
2022]. [Online]. Available: https://github.com/S2-group/
Lacuna-evaluation/blob/main/Experiment%20on%20Lacuna%
20performance%20-%20online%20appendix.pdf

[45] G. Qiong and W. Li, “An optimization method of javascript re-
dundant code elimination based on hybrid analysis technique,” in
2020 17th International Computer Conference on Wavelet Active Media
Technology and Information Processing (ICCWAMTIP). IEEE, 2020,
pp. 300–305.

[46] R. Ye, L. Liu, S. Hu, F. Zhu, J. Yang, and F. Wang, “Jslim: Reducing
the known vulnerabilities of javascript application by debloating,”
in Emerging Information Security and Applications: Second Interna-
tional Symposium, EISA 2021, Copenhagen, Denmark, November 12-
13, 2021, Revised Selected Papers. Springer, 2022, pp. 128–143.

[47] J. Kupoluyi, M. Chaqfeh, M. Varvello, R. Coke, W. Hashmi, L. Sub-
ramanian, and Y. Zaki, “Muzeel: assessing the impact of javascript
dead code elimination on mobile web performance,” in Proceedings
of the 22nd ACM Internet Measurement Conference, 2022, pp. 335–348.

[48] U. Goel and M. Steiner, “System to identify and elide super-
fluous javascript code for faster webpage loads,” arXiv preprint
arXiv:2003.07396, 2020.

[49] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer
Publishing Company, Incorporated, 2012.

[50] N. Juristo and A. M. Moreno, Basics of software engineering experi-
mentation. Springer Science & Business Media, 2013.

[51] T. Dybå, V. B. Kampenes, and D. I. Sjøberg, “A systematic review
of statistical power in software engineering experiments,” Informa-
tion and Software Technology, vol. 48, no. 8, pp. 745–755, 2006.

[52] F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical
software engineering. Springer, 2007.

[53] F. G. de Oliveira Neto, R. Torkar, R. Feldt, L. Gren, C. A. Furia, and
Z. Huang, “Evolution of statistical analysis in empirical software
engineering research: Current state and steps forward,” Journal of
Systems and Software, vol. 156, pp. 246–267, 2019.

[54] V. R. Basili and H. D. Rombach, “The tame project: towards
improvement-oriented software environments,” IEEE Transactions
on Software Engineering, vol. 14, no. 6, pp. 758–773, 1988.

[55] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study
of the energy consumption of android applications,” in 2014
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 121–130.

[56] L. Baresi, W. G. Griswold, G. A. Lewis, M. Autili, I. Malavolta, and
C. Julien, “Trends and challenges for software engineering in the
mobile domain,” IEEE Software, vol. 38, no. 1, pp. 88–96, 2020.

[57] R. Verdecchia, P. Lago, C. Ebert, and C. De Vries, “Green IT and
green software,” IEEE Software, vol. 38, no. 6, pp. 7–15, 2021.

[58] M. Caulo, R. Francese, G. Scanniello, and G. Tortora, “Implica-
tions on the migration from ionic to android,” in Proceedings of
Product-Focused Software Process Improvement, ser. Lecture Notes in
Computer Science, vol. 13126. Springer, 2021, pp. 3–19.

[59] K. Chan Jong Chu, T. Islam, M. Exposito, S. Sheombar, C. Val-
ladares, O. Philippot, E. Grua, and I. Malavolta, “Investigating the
correlation between performance scores and energy consumption
of mobile web apps,” in Proceedings of the International Conference
on Evaluation and Assessment on Software Engineering. ACM, 2020,
pp. 190–199.

[60] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoud-
hury, “Energypatch: Repairing resource leaks to improve energy-
efficiency of android apps,” IEEE Transactions on Software Engineer-
ing, vol. 44, no. 5, pp. 470–490, 2017.

[61] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in 2013
35th international conference on software engineering. IEEE, 2013, pp.
92–101.

[62] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Camp-
bell, and S. Romansky, “Greenminer: A hardware based mining
software repositories software energy consumption framework,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, 2014, pp. 12–21.

[63] E. A. Santos, C. McLean, C. Solinas, and A. Hindle, “How does
docker affect energy consumption? evaluating workloads in and
out of docker containers,” Journal of Systems and Software, vol. 146,
pp. 14–25, 2018.

[64] S. Linge and H. P. Langtangen, Computing Integrals. Cham:
Springer International Publishing, 2016, pp. 55–93. [Online].
Available: https://doi.org/10.1007/978-3-319-32428-9 3

[65] (2022, May) MDN Web Docs Glossary: Definitions of Web-related
terms | MDN. [Accessed 27. Jul. 2022]. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Glossary

[66] “Paint Timing 1,” Feb 2021, [Accessed 4. Jan. 2022]. [Online]. Avail-
able: https://w3c.github.io/paint-timing/#first-contentful-paint

[67] I. Malavolta, E. M. Grua, C.-Y. Lam, R. de Vries, F. Tan,
E. Zielinski, M. Peters, and L. Kaandorp, “A framework for
the automatic execution of measurement-based experiments on
android devices,” in 35th IEEE/ACM International Conference on
Automated Software Engineering Workshops. ACM, 2020, pp. 61–
66. [Online]. Available: http://www.ivanomalavolta.com/files/
papers/A Mobile 2020.pdf

[68] P. K. D. Pramanik, N. Sinhababu, B. Mukherjee, S. Padmanaban,
A. Maity, B. K. Upadhyaya, J. B. Holm-Nielsen, and P. Choudhury,
“Power consumption analysis, measurement, management, and
issues: A state-of-the-art review of smartphone battery and energy
usage,” IEEE Access, vol. 7, pp. 182 113–182 172, 2019.

[69] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirović,
“Assessing the impact of service workers on the energy efficiency
of progressive web apps,” in Proceedings of the 4th International

https://esprima.org
https://phantomjs.org
https://github.com/wala/WALA
https://github.com/cs-au-dk/TAJS
https://github.com/gunar/callgraph
https://github.com/S2-group/Lacuna-evaluation/blob/main/Experiment%20on%20Lacuna%20performance%20-%20online%20appendix.pdf
https://github.com/S2-group/Lacuna-evaluation/blob/main/Experiment%20on%20Lacuna%20performance%20-%20online%20appendix.pdf
https://github.com/S2-group/Lacuna-evaluation/blob/main/Experiment%20on%20Lacuna%20performance%20-%20online%20appendix.pdf
https://doi.org/10.1007/978-3-319-32428-9_3
https://developer.mozilla.org/en-US/docs/Glossary
https://w3c.github.io/paint-timing/#first-contentful-paint
http://www.ivanomalavolta.com/files/papers/A_Mobile_2020.pdf
http://www.ivanomalavolta.com/files/papers/A_Mobile_2020.pdf

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 23

Conference on Mobile Software Engineering and Systems. IEEE Press,
2017, pp. 35–45.

[70] M. Couto, J. Saraiva, and J. P. Fernandes, “Energy refactorings for
android in the large and in the wild,” in 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and Reengineering.
IEEE, 2020, pp. 217–228.

[71] Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, “Lightweight energy
consumption analysis and prediction for android applications,”
Science of Computer Programming, vol. 162, pp. 132–147, 2018.

[72] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of
mobile devices,” ACM Computing Surveys, vol. 48, no. 3, pp. 1–40,
2015.

[73] (2022, Jul.) mitmproxy - an interactive HTTPS proxy. [Accessed
27. Jul. 2022]. [Online]. Available: https://mitmproxy.org

[74] (2022, Mar.) Android Debug Bridge (adb) | Android Developers.
[Accessed 27. Jul. 2022]. [Online]. Available: https://developer.
android.com/studio/command-line/adb

[75] L. Zizzamia. (2022, Feb.) Perfume.js - Page speed monitoring.
[Accessed 27. Jul. 2022]. [Online]. Available: https://zizzamia.
github.io/perfume

[76] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating
source line level energy information for android applications,” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis. ACM, 2013, pp. 78–89.

[77] M. Tomczak and E. Tomczak, “The need to report effect size
estimates revisited. an overview of some recommended measures
of effect size,” Trends in sport sciences, vol. 1, no. 21, pp. 19–25, 2014.

[78] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American statistical association, vol. 56, no. 293, pp. 52–64, 1961.

[79] D. Thissen, L. Steinberg, and D. Kuang, “Quick and easy imple-
mentation of the benjamini-hochberg procedure for controlling the
false positive rate in multiple comparisons,” Journal of educational
and behavioral statistics, vol. 27, no. 1, pp. 77–83, 2002.

[80] (2022, Jul.) webpack. [Accessed 27. Jul. 2022]. [Online]. Available:
https://webpack.js.org

[81] (2022, Jul.) gulp-bundle. [Accessed 27. Jul. 2022]. [Online].
Available: https://www.npmjs.com/package/gulp-bundle

[82] (2021, Dec.) Browserify. [Accessed 27. Jul. 2022]. [Online].
Available: https://browserify.org

[83] D. T. Campbell and T. D. Cook, Quasi-experimentation: Design and
analysis issues for field settings. Rand McNally College Publishing
Company Chicago, 1979.

[84] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk,
“Are unreachable methods harmful? results from a controlled
experiment,” in Proceedings of International Conference on Program
Comprehension. IEEE, 2016, pp. 1–10.

[85] P. Cassieri, S. Romano, G. Scanniello, G. Tortora, and D. Caivano,
“Do developers modify dead methods during the maintenance
of java desktop applications?” in The International Conference on
Evaluation and Assessment in Software Engineering 2022. ACM,
2022, p. 120–129.

[86] Y.-F. Chen, E. R. Gansner, and E. Koutsofios, “A c++ data model
supporting reachability analysis and dead code detection,” IEEE
Trans. Softw. Eng., vol. 24, no. 9, pp. 682–694, 1998.

[87] S. Romano, G. Scanniello, C. Sartiani, and M. Risi, “A graph-
based approach to detect unreachable methods in java software,”
in Proceedings of the 31st Symposium on Applied Computing. ACM,
2016, pp. 1538–1541.

[88] S. Romano and G. Scanniello, “Dum-tool,” in Proceedings of the
31st International Conference on Software Maintenance and Evolution.
IEEE, 2015, pp. 339–341.

[89] ——, “Exploring the use of rapid type analysis for detecting
the dead method smell in java code,” in Proceedings of the 44th
EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 2018, in press.

[90] F. Tip and J. Palsberg, “Scalable propagation-based call graph
construction algorithms,” in Proceedings of the Conference on Object-
oriented Programming, Systems, Languages, and Applications. ACM,
2000, pp. 281–293.

[91] N. Alabwaini, A. Aldaàje, T. Jaber, M. Abdallah, and A. A. Tamimi,
“Using program slicing to detect the dead code,” in Proceedings of
International Conference on Computer Science and Information Technol-
ogy, 2018, pp. 230–233.

[92] K. V. N. Sunitha and V. V. Kumar, “A new technique for copy
propagation and dead code elimination using hash based value

numbering,” in Proceedings of International Conference on Advanced
Computing and Communications, 2006, pp. 601–604.

[93] H. H. Karer and P. B. Soni, “Dead code elimination technique in
eclipse compiler for java,” in Proceedings of International Conference
on Control, Instrumentation, Communication and Computational Tech-
nologies, 2015, pp. 275–278.

[94] K. Kim, J. Kim, and W. Yoo, “Dead code elimination in ctoc,”
in Proceedings of International Conference on Software Engineering
Research, Management Applications, 2007, pp. 584–588.

[95] X. Wang, Y. Zhang, L. Zhao, and X. Chen, “Dead code detection
method based on program slicing,” in Proceedings of International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, 2017, pp. 155–158.

https://mitmproxy.org
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://zizzamia.github.io/perfume
https://zizzamia.github.io/perfume
https://webpack.js.org
https://www.npmjs.com/package/gulp-bundle
https://browserify.org

	Introduction
	Background
	Dead Code
	Lacuna
	Preliminary concepts
	Parsing
	Analysis
	Elimination
	Implementation and used technologies
	Novel features and extensions
	Correctness, Completeness, and Accuracy of Lacuna
	External Evaluation of Lacuna

	Experiment on the Run-time Overhead of JavaScript Dead Code
	Goal and Research Questions
	Subjects Selection and Planning
	Variables and Statistical Hypotheses
	Experiment execution
	Data Analysis

	Results
	Data exploration
	Overhead on Energy Consumption (RQ1)
	Overhead on Performance (RQ2)
	Overhead on Network Usage (RQ3)
	Overhead on Resources Usage (RQ4)
	Impact of Dead Function Removal

	Discussion
	Implications
	Threats to Validity
	Construct validity
	Conclusion validity
	Internal validity
	External validity

	Related Work
	Conclusions and Future Work
	References

