
Software and Systems Modeling
https://doi.org/10.1007/s10270-022-01010-3

REGULAR PAPER

Blendedmodeling in commercial and open-source model-driven
software engineering tools: A systematic study

Istvan David1 ·Malvina Latifaj2 · Jakob Pietron3 ·Weixing Zhang4,5 · Federico Ciccozzi2 ·
Ivano Malavolta6 · Alexander Raschke3 · Jan-Philipp Steghöfer4,5 · Regina Hebig4,5

Received: 6 September 2021 / Revised: 6 April 2022 / Accepted: 12 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Blended modeling aims to improve the user experience of modeling activities by prioritizing the seamless interaction with
models through multiple notations over the consistency of the models. Inconsistency tolerance, thus, becomes an important
aspect in such settings. To understand the potential of current commercial and open-source modeling tools to support blended
modeling,we have designed and carried out a systematic study.We identify challenges and opportunities in the tooling aspect of
blendedmodeling. Specifically, we investigate the user-facing and implementation-related characteristics of existingmodeling
tools that already support multiple types of notations and map their support for other blended aspects, such as inconsistency
tolerance, and elevated user experience. For the sake of completeness, we have conducted a multivocal study, encompassing
an academic review, and grey literature review. We have reviewed nearly 5000 academic papers and nearly 1500 entries of
grey literature. We have identified 133 candidate tools, and eventually selected 26 of them to represent the current spectrum
of modeling tools.

Keywords Model-driven development · Inconsistency tolerance · Multi-view modeling · Modeling tools · Survey

1 Introduction

Model-driven engineering (MDE) advocates modeling the
engineered system at high levels of abstraction before it
gets realized. The resulting models serve crucial roles in
ensuring the appropriateness (e.g., correctness, safety, opti-
mality) of the system. To keep the cognitive flow ofmodeling
effective and efficient, stakeholders shall be equipped with

Communicated by Loli Burgueño.

This research was partially funded by the Rijksdienst voor
Ondernemend Nederland (RVO) through the ITEA3 BUMBLE
project (18006).

B Istvan David
istvan.david@umontreal.ca

1 DIRO – Université de Montréal, Montreal, Canada

2 Mälardalen University, Västerås, Sweden

3 Ulm University, Ulm, Germany

4 Chalmers University of Technology, Gothenburg, Sweden

5 University of Gothenburg, Gothenburg, Sweden

6 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

proper formalisms, notations, and supporting computer-
aided mechanisms. This is especially important in the design
of modern systems, as their complexity has been increas-
ing exponentially over the past years [62]. Modeling does
not remove complexity from the engineering process, but
rather, it replaces the accidental complexity of complex sys-
tems with essential complexity that is easier to manage [3].
Nonetheless, as a consequence of the increasing complexity
of modern systems, modeling itself is becoming more com-
plex.

In this paper, we focus on a specific manifestation of this
added complexity stemming from the need for an orches-
trated ensemble of modeling notations, aiming to enable
seamless interaction with models through any of the nota-
tions. Such a need has been reported in multiple academic
[9] and industrial domains, e.g., automotive [41], avionics
[39], cyber-physical systems [91], and product lines [71]. In
such an approach, user experience may also be (temporarily)
prioritized over the correctness of the described system, in
an effort to enable a smooth process of expressing the stake-
holder’s cognitivemodels in terms of themodeling language.
This approach is referred to as blended modeling [1].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01010-3&domain=pdf
http://orcid.org/0000-0002-4870-8433
http://orcid.org/0000-0002-2754-9568
http://orcid.org/0000-0001-8308-6636
http://orcid.org/0000-0003-2890-6034
http://orcid.org/0000-0002-0401-1036
http://orcid.org/0000-0001-5773-8346
http://orcid.org/0000-0002-6088-8393
http://orcid.org/0000-0003-1694-0972
http://orcid.org/0000-0002-1459-2081


I. David et al.

1.1 What is blendedmodeling?

Blendedmodelingwas first introduced byCiccozzi et al. [15]
as follows:

Blended modeling is the activity of interacting seam-
lessly with a single model (i.e., abstract syntax) through
multiple notations (i.e., concrete syntaxes), allowing a
certain degree of temporary inconsistencies.

That is, blended modeling is characterized by the follow-
ing three features.

Multiple notations This is not to be confused with multiple
languages. In our terminology, a language is composed
of (i) a metamodel (abstract syntax), and (ii) a set of
notations (concrete syntax). Blended modeling does not
impose different metamodels.

Seamless interactionDifferent notations have to be carefully
integrated and orchestrated to allow for using the most
appropriate notation for specific modeling tasks. This
requires intuitive navigation between notations, proper
change propagation between them, and in many cases,
traceability.

Flexible consistency management This aspect entails both
vertical inconsistencies [83] (e.g., inconsistencies between
the instance model and its metamodel); and horizon-
tal inconsistencies (e.g., inconsistencies between two
notations used to manipulate instances of the same meta-
model).

1.2 What is not blendedmodeling?

Multi-view modeling is not blended modeling. As shown
in Fig. 1, Multi-View Modeling (MVM) [87] and blended
modeling share the trait of multi-notation. The main differ-
ences are, that (i) MVM further assumesmultiple languages,
while (ii) blended modeling assumes relaxed consistency
rules instead. These differences stem from the different aims
of the two approaches. MVM is concerned with constructing
the appropriate views for stakeholders with varying back-
grounds. Blended modeling focuses on the elevated UXwith
respect to an ensemble of notations, assuming a single under-
lying model. Prior work has reported challenges in relaxed
consistency in multi-language settings such as MVM [66].
Blended modeling enables relaxed consistency by restricting
the number of languages to one.

For example, theSCADE1 tool suite provides the userwith
different languages for different purposes within the same
model development environment. These languages facilitate
multi-view modeling of the overall system and necessitate

1 https://www.ansys.com/products/embedded-software/ansys-scade-
suite.

Blended modeling

MVM

Strict Relaxed Consistency

MPM

Multi-

Notation
(Concrete syntax)

Language
(Abstract syntax)

Formalism
(Semantics)

Fig. 1 Blended modeling in the context of MVM and MPM

different abstract syntaxes. Therefore, working with SCADE
cannot be considered blended modeling.
Multi-paradigm modeling is not blended modeling. In addi-
tion to assumingmultiple languages,Multi-ParadigmModel-
ing (MPM) [58] further assumes potentially different seman-
tics behind the languages, giving rise tomulti-formalism (Fig.
1). This added complexity positions MPM even further from
blended modeling and vastly exacerbates consistency man-
agement, as reported in prior work [17].

For example, Matlab/Simulink is a typical combination
of formalisms for system design, in which the overall sys-
tem is graphically designed in Simulink,2 which follows
causal block diagrams (CBD) semantics; and the low-level
functions in the system are textually described in Matlab,3

which relies on matrix semantics for complex computations.
While some level of navigation is provided between the two
formalisms within the Matlab modeling and development
environment, relaxed consistency is completely missing.
Therefore, working with Matlab/Simulink cannot be consid-
ered blended modeling.

1.3 Motivation and aim

Blended modeling is an emerging new concept; thus, a map
of current commercial and open-source tools is needed to
properly position it in the research-and-development land-
scape.

In this article, we report the design, execution, and results
of our mapping study on tools that are prime candidates to
support blended modeling. Our study shows that these are
typically tools with multiple notations for a single under-
lying abstract syntax, but they lack proper inconsistency
tolerance mechanisms or fail to leverage such features for
an improved user experience. The aim of our study was to
identify, classify, and analyze (i) the user-oriented, and (ii)
the realization-oriented characteristics of these tools. To infer
this information while ensuring external validity, we sur-
veyed both the academic (peer-reviewed) literature and the

2 https://se.mathworks.com/products/simulink.html.
3 https://www.mathworks.com/products/matlab.html.

123

https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://se.mathworks.com/products/simulink.html
https://www.mathworks.com/products/matlab.html


Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

grey literature [69], consisting of websites, blogs, and user
manuals of engineering tools, following the guidelines for
multi-vocal reviews in software engineering [33]. To be able
to treat both types of literature uniformly, we made tools the
primary units of our study, instead of papers. This is moti-
vated by the inherent limitations of grey literature in terms of
providing high-fidelity research data. Websites and end-user
documentation do not aim to provide such information. We
formulated a surveying protocol based on well-established
guidelines, and we have meticulously followed this protocol
in the execution of our study. Eventually, we screened 4975
academic papers and included 77 of them.Additionally, 1494
grey literature entries were processed. Out of the academic
papers, 68 distinct tools were extracted and complemented
by 68 tools extracted from the grey literature. After remov-
ing duplicates, the set of 133 tools was reviewed according
to the tool selection criteria (see Sect. 3) and we eventually
identified 26 tools to be analyzed in detail. Although this list
of tools is not exhaustive, we are reasonably confident about
its representativeness of the domain of interest.

The results of this study provide a clear overview of the
state of the art and practice of the domain of modeling tools
closest to blendedmodeling. The tool characteristics reported
in this paper can be particularly useful for tool providers
in identifying the limitations of their tools in supporting
blendedmodeling. Researchers of the three main dimensions
of blendedmodeling (multi-notation, seamless integration of
languages, inconsistency tolerance) could use this work to
better contextualize their research, and position their work
better in terms of applicability.

1.4 Structure

The rest of this paper is structured as follows. First, in Sect. 2,
we give an overview of the background concepts of blended
modeling and review the related work. In Sect. 3, we define
the methodological framework for carrying out this study. In
Sect. 4, we elaborate on the findings of this study, in particu-
lar on the results pertaining to the research questions of this
study: the user-oriented and realization-oriented characteris-
tics of the tools of interest. In Sect. 5, we provide orthogonal
insights on the aggregated data.Wediscuss the results in Sect.
6, and the threats to validity in Sect. 7. Finally, we summarize
this paper by drawing the conclusions in Sect. 8.

2 Background

In this section, we provide the foundational background
concepts to contextualize our study. More specifically, we
describe the core ingredients of blended modeling: multiple
notations (Sect. 2.1), seamless interaction (Sect. 2.2), and
flexibility in managing inconsistencies (Sect. 2.3). Addition-

ally, we discuss the secondary literature related to our study
(Sect. 2.4).

2.1 Multiple notations

Interacting with the (abstract) model through multiple nota-
tions (concrete syntaxes) is one of the three distinguishing
features of blended modeling. A vast body of knowledge on
the topic has been produced, especially in relation to multi-
view modeling, and multi-paradigm modeling.

2.1.1 Multi-viewmodeling

Multi-viewmodeling (MVM) tackles the complexity ofmod-
eling heterogeneous systems by decomposing the models
into multiple views, that are concerned with specific aspects
of the system [87]. The ISO/IEC/IEEE 42010:2011 standard
[42] defines a view as a set of concerns of specific stakehold-
ers and viewpoints as the specification of conventions utilized
to construct a view. The fivemutually non-exclusive enabling
mechanisms of multi-view modeling are (i) synthetic, where
views are specified by means of different domain specific
modeling languages and synthesized together; (ii) separate,
a stricter version of synthetic, where synthesis does not take
place; (iii) projective, where a single metamodel allows for
the definition of multiple virtual views; (iv) orthographic,
where views are orthographic projections of a single underly-
ingmodel; or (v)hybrid,where views represent only a portion
of the common metamodel [13]. MVM has been shown to
be an effective approach in several complex domains, such
as cyber-physical systems [62], and cloud-based software-
intensive systems [16]. The principles of MVM are similar
to those of blended modeling. However, its goal is different.
While MVM is oriented toward the identification of multi-
ple views and the management of consistency between them,
blendedmodeling focuses on enabling an elevated user expe-
rience while working with multiple notations at the same
time.

2.1.2 Multi-paradigmmodeling

Multi-paradigmmodeling (MPM) advocates modeling every
aspect of the system explicitly, at the most appropriate level
of abstraction, and using the most appropriate formalism
[11,58]. As such, MPM facilitates the modeling of com-
plex systems that could not be described through a single
formalism and at a common level of abstraction due to the
heterogeneity of the different components. It combines three
research areas: (i) meta-modeling used for the specification
of formalisms, (ii) multi-formalism used for the coupling of
models specified in different formalisms and their transfor-
mations, and (iii) model abstraction used for the relationships
among models described in different formalisms [81]. The

123



I. David et al.

principles of MPM are similar to those of blended modeling,
as both approaches promote employing a variety of notations
to model the problem at hand. However, MPM achieves this
by employing a variety of separate formalisms, i.e., multiple
notations with possibly different semantics. Blended mod-
eling assumes a single abstract syntax, and therefore, single
semantics. This simplification allows for greater flexibility
in terms of temporarily inconsistent designs.

2.2 Seamless interaction

Usability in terms of the ability to seamlessly interact with
models throughmultiple different notations is one of the three
distinguishing features of blended modeling. In this section,
we review how state-of-the-art approaches typically support
seamless interaction.We focus on UML tools here since they
have received significant attention from research and tool
providers of the software engineering domain in the past. We
also mention examples for other modeling languages where
appropriate.

2.2.1 Text-based modeling with graphical visualizations

Umple [T25] is a modeling tool that supports the creation
of UML models using both textual and graphical notations,
where the synchronization between the two notations is auto-
mated and on the fly. However, the graphical editor does
not offer full editing capabilities, and the existing editing
capabilities are only available on class diagrams but not on
state machines, composite structures, or feature diagrams.
FXDiagram4 is a JavaFX-based framework that can be inte-
grated into Eclipse as well as intelliJ IDEA. It supports the
creation of graph diagrams (nodes and edges), and it is typ-
ically used for graphical visualization of textual DSLs but
does not provide editing functions. MetaUML5 is a GNU
GPL library for typesetting UML diagrams, using a textual
notation. This notation is used for rendering read-only graph-
ical UML diagrams. PlantUML6 is very similar but supports
also non-UML diagrams. ZenUML7 supports sequence dia-
grams and flowcharts, again defined using a textual notation
that is translated into read-only graphical views. The genera-
tion of the sequence diagrams is automatic, as the conversion
happens on the browser. Excalibur [67] is a tool that relies on
Xtext for textual specification and Sirius for graphical views
of the textual specification. The model elements are defined
using Messir textual DSL, and the generated graphical visu-
alization is read-only. Chart Mage8 is a web-based tool that

4 https://jankoehnlein.github.io/FXDiagram.
5 https://github.com/ogheorghies/MetaUML.
6 https://plantuml.com.
7 https://www.zenuml.com.
8 http://chartmage.com/index.html.

supports automatic and on-the-fly generation of sequence
diagrams and flowcharts using a textual notation. DotUML9

is a javascript application that supports the generation of
a subset of UML diagrams (i.e., use-case, sequence, class,
state, and deployment) from a textual notation. For all of the
aforementioned tools, concrete syntaxes are predefined and
not customizable, and the graphical notation is read-only,
generated using the textual notation.

2.2.2 Mixed textual and graphical modeling

Addazi and Ciccozzi [1] present a proof-of-concept imple-
mentation for UML and UML profiles modeling using
blended textual and graphical notations. The stack of tech-
nologies used includes Eclipse Modeling Framework
(EMF),10 Xtext,11 andPapyrus [T11].Their solution includes
a single underlying abstract syntax, twonotations (i.e., graph-
ical and textual), and one single persistent resource that is the
UML resource. This architecture enables synchronization
by means of serialization/deserialization operations across
Xtext and UML models. In addition, the authors conduct
an experiment to demonstrate that their solution on blended
modeling increases user performance compared to single
notation modeling.

Maro et al. [52] introduce a solution that integrates graphi-
cal and textual editors for a specific UML profile-based DSL.
Being that the graphical editor is already provided, this work
focuses on obtaining the textual editor and switching between
views (i.e., graphical and textual). To obtain the textual edi-
tor, the UML profile-based DSL is first transformed into an
Ecore model using an ATL transformation, and then, this
Ecore model is consumed by the Xtext plugin to generate
the textual editor. Switching between views is achieved by
employing ATL transformations. Scheidgen [70] provides
embedded textual editors for graphical editors as an add-on
feature. For each selected model element that needs to be
edited, the embedded textual editor creates an initial repre-
sentation that can be changed by the user and using parsing
operations, new edited model elements are created. How-
ever, the synchronization is on-demand as the changes in the
underlyingmodel are not carried out until they are committed
by the user and the textual editor is closed.

Lazăr [51] makes use of the Eclipse modeling environ-
ment to integrate the existing UML tree-based editor with
the textual editor for Alf language12 and to create fUML13

models. However, the synchronization is on-demand as the

9 https://dotuml.com.
10 https://www.eclipse.org/modeling/emf.
11 https://www.eclipse.org/Xtext.
12 https://www.omg.org/spec/ALF.
13 https://www.omg.org/spec/FUML.

123

https://jankoehnlein.github.io/FXDiagram
https://github.com/ogheorghies/MetaUML
https://plantuml.com
https://www.zenuml.com
http://chartmage.com/index.html
https://dotuml.com
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/Xtext
https://www.omg.org/spec/ALF
https://www.omg.org/spec/FUML


Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

changes are carried out upon the occurrence of a save action
by the user.

Charfi et al. [12] define a hybrid language that integrates
textual and graphical notations in one concrete syntax. The
contribution consists of a visual notation for the most used
UML actions and an editor that supports the proposed nota-
tion. The hypothesis that the hybrid notation can perform
better than the textual notation is backed by an experi-
ment that takes into consideration the learnability of the
hybrid notation, the prevented errors, and the circumstances
in which the hybrid notation is a better fit than the textual
notation.However, this approach is restricted toUMLactions
only.

Van Rest et al. [80] implement an approach for the
robust synchronization of graphical editors generated with
the Graphical Modeling Framework (GMF)14 and textual
editors generatedwith Spoofax.15 This approach allows error
recovery during synchronization and preserves the textual
and graphical layout in case of errors. However, layout
preservation is not supported at all times, as during cut-
paste operations, the elements and their associated layouts
are deleted and then recreated, therefore losing the original
layout.

2.2.3 Projectional editing

Projectional editing is an approach where the abstract syn-
tax tree (AST) is modified directly upon every editing action
and bypasses the stages of the parser-based approach, where
the parser must first check the correctness of the syntactic
aspects and then, construct the AST based on the changes in
the notation [86]. This course of action allows the definition
of multiple notations (e.g., tables, diagrams, formulas) that
cannot be supported by parser-based approaches and sup-
ports multiple views of the same program, simultaneously.
Moreover, a considerable amount of the ambiguities caused
during the parsing process are tackled. Projectional editing
is a realization of the intentional programming paradigm
[73], and as such, it encourages the combination of a
variety of different notations. Some of the state-of-the-art
language workbenches that adopted this principle for pro-
viding domain-specific tool engineers with efficient tools [8]
are JetBrains MPS16 and MelanEE17 However, even though
they provide a greater amount of notations, their support
for textual notations is limited compared to parser-based
approaches, as it is only a projection that resembles text.
In particular, no possibly inconsistent intermediate states are
allowed, which consequently restricts the user accustomed

14 https://www.eclipse.org/modeling/gmp.
15 http://strategoxt.org/Spoofax.
16 https://www.jetbrains.com/mps.
17 http://www.melanee.org.

to classical text editors and their corresponding free editing
features.

2.3 Inconsistencymanagement

Approaches, such as multi-view modeling (MVM) and
multi-paradigm modeling (MPM), advocate modeling the
engineered system using the most appropriate notations, for-
malisms, and abstractions. This allows multiple users to be
involved in the modeling of the system and thus, introduces
parallelism, which is beneficial for the overall efficiency of
the engineering endeavor. Parallelism, however, gives rise
to inconsistencies between the design artifacts, compromis-
ing the ultimate correctness of the system. Inconsistency has
been shown to be an effective heuristic for managing the
ultimate correctness of the system [17]. Techniques, such as
blended modeling, make use of this assertion by focusing on
the early detection of inconsistencies [19] and establishing
the proper tolerance mechanisms.

The notion of consistency models and their various alter-
natives have beenwell-researched already in early distributed
systems. Lamport [50] is the first to describe how multi-
processor systems should be constructed to ensure proper
execution of programs. His notion of sequential consistency
allows a relaxation of the locking model by assuming a total
order of modifications that distributed nodes are guaran-
teed to observe. Adve and Gharachorloo [2] describe various
relaxations of the sequential consistency model, based on
architectural choices on the hardware and software level.
Eventual consistency has been suggested by Vogel et al. [85]
to enable a weaker notion of consistency between distributed
participants, by embracing that real consistency can never be
achieved. In such settings, distributed participants are charac-
terized by the BASE properties: basic availability, soft state,
and eventual consistency. Lately, strong eventual consistency
(SEC) has been suggested [4] to combine the liveliness guar-
antees of eventual consistency with the safety guarantees of
strong consistency. Conflict-free replicated data types [72]
are the prime examples of their applications.

Inconsistencies are a well-researched area in software
engineering [74], too. Consistency between models can be
categorized into two orthogonal dimensions [26]: horizontal
and vertical consistency; and syntactic and semantic consis-
tency. Horizontal consistency is concerned with models on
the same level of abstraction, whereas vertical consistency
is defined between models on different levels of abstraction
(typically in model-metamodel contexts) [82]. The majority
of inconsistency management techniques rely on syntactic
concepts, e.g., synchronization by bi-directionalmodel trans-
formations [75], triple-graph grammars [35], and by version
control systems and related mechanisms [44,45]. However,
semantic techniques have been shown to be beneficial in het-
erogeneous engineering settings [83]. View consistency has

123

https://www.eclipse.org/modeling/gmp
http://strategoxt.org/Spoofax
https://www.jetbrains.com/mps
http://www.melanee.org


I. David et al.

been researched in the context ofMVM, e.g., in the Vitruvius
approach [48], which provides languages for consistency
preservation, and defines a model-driven development pro-
cess for enacting consistency rules.

Finkelstein et al. [28] suggest that inconsistencies are
organic elements of any engineering process, and instead of
simply removing them from the system, one should apply
proper inconsistency management techniques [29]. Such
inconsistency management techniques typically entail the
activities of detecting, resolving, preventing, and tolerating
inconsistencies [61]. Blended modeling heavily relies on the
tolerance of inconsistencies. Balzer et al. [5] suggest aug-
menting inconsistency instances with a state. Inconsistency
rules are first deconstructed into appearance and disappear-
ance rules spanning a temporal interval; then, tolerance rules
are put in place to trigger repair actions based on temporal
constructs. Easterbrook et al. [24] propose a similar tech-
nique for temporal inconsistency tolerance in the context of
MVM. Inconsistency tolerance is achieved via pairs of pre-
and post-conditions relying on a user-defined consistency
metric. David et al. [18] introduce various patterns of incon-
sistency tolerance for implementing such systems.

2.4 Related secondary literature

This paper reports on the first systematic study on blended
modeling. There are, however, secondary studies close to our
work that are similar in topic, but differ in terms ofmotivation
and objectives, and are generally limited to a narrower scope.

Torres et al. [77] conduct a systematic literature review
with the aim to identify a list of available tools to support
model management and provide a categorization of these
tools into (i) tools that can provide consistency checking on
models of different domains, (ii) tools that can provide con-
sistency checking on models of the same domain, and (iii)
tools that do not provide any consistency checking. Further-
more, the authors identify the inconsistency types, strategies
to keep the consistency betweenmodels of different domains,
and the challenges to manage models of different domains.
The information retrieved from the primary studies is also
complemented with additional data sources (e.g., the official
website of the tool). Our study focuses on a broader scope,
especially multi-notation and seamless interaction. Torres et
al. observe that 35% of their analyzed tools do not provide
any consistency checking features, whereas in our study we
observe that 64% of the analyzed tools do not support mod-
els inconsistencies. Moreover, Torres et al. identify different
strategies that have been used to keep models consistent,
e.g., by using standard file formats for the models, explic-
itlymodeling dependencies amongmodel elements,mapping
model elements to a shared ontology, etc. Our study com-
plements such results by highlighting which inconsistency
management strategies involve a manual effort (like keeping

a dependency matrix always up to date), a semi-automated
procedure (e.g., by specifying a priori consistency constraints
and checking them during development), or a completely
automated one (e.g., via the automated application of incon-
sistency resolution procedures).

Iung et al. [43] conduct a systematic mapping study with
the aim to identify tools, language workbenches, or frame-
works for DSL development. The authors identify 59 tools,
and they use the feature model proposed by Erdweg et al.
[27] for their comparison. The study focuses on the tech-
nologies/tools used forDSLdevelopment, their license types,
the application domains, and the features of the DSL cre-
ation process that these tools support. 48 tools support only
one notation (graphical or textual), seven tools support two
notations (graphical and textual), two tools support three
notations, and two tools support four notations. Our study
focuses on a broader scope, by extending the set of features on
which the comparison is basedwith features such as synchro-
nizationmechanisms, collaborative features, or conformance
relaxation. We also contextualize our work on a broader
timeline, while the authors focus on the period between
2012–2019. In line with the results of our study, Iung et al.
observed that the notations that were more frequently used in
combination are textual and graphical, with the tabular one
complementing them. In [43], two language workbenches
are identified as particularly relevant for blended modeling:
(i) GEMOC Studio, which provides real-time bidirectional
synchronization in their generated editors, and (ii) theWhole
Platform, which allows language engineers to choose among
four different types of notation (i.e., textual, graphical, tabu-
lar, and symbolic), and to visualize the different translations
among them at the model level.

Franzago et al. [30] and David et al. [20] map the
state-of-the-practice of collaborative model-based software
engineering. The authors identify and classify collaborative
MDSE approaches based on the different categories such as
characteristics of the collaborative model editing environ-
ments, model versioning mechanisms, model repositories,
support for communication and decision making, and more.
Additionally, the authors identify limitations and challenges
with respect to the state of the art in collaborative MDSE
approaches. Regarding model management, they provide
a taxonomy for the management support of collaborative
MDSE approaches, collaboration support, and communi-
cation support. This study covers some of the aspects that
we cover in our systematic mapping study (e.g., conflict
detection). However, while this study is mostly focused on
the characteristics of the collaborative approaches, we aim
toward a classification of tools based on a broader set of
features such as synchronization mechanisms and their gen-
eration, or conformance relaxation. The results of Franzago
et al. and David et al. for collaborative modeling that are
confirmed in this study are about: (i) the types of nota-

123



Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

tions, with graphical as the most supported one, followed
by textual, (ii) the prevalence of custom/other modeling
platforms with respect to Eclipse EMF, (iii) the growth of
web-based approaches, (iv) the growth of preventive con-
flict management, and (v) the prevalence of mechanisms
for (semi-)automatically resolving conflicts. We anticipate
that 15 out of the 26 tools analyzed in this study sup-
port collaborative modeling, with the majority of tools
providing off-line collaboration (i.e., a la Git), rather than
real-time collaboration (i.e., a la Google Docs); this result
is different for academia where, according to Franzago et
al. and David et al., researchers focus primarily on real-
time collaboration. Another difference with respect to the
state of the art in collaborative modeling is that blended
modeling tools are primarily parser-based, whereas collab-
orative modeling approaches tend to be equally distributed
between parser-based and projectional approaches. Interest-
ingly, while researchers are recently investigating more on
eventual consistency for collaborative modeling [20], in our
studyweobserve that blendedmodeling tools provide limited
support for consistency tolerance that would allow deviations
between different notations describing the same model.

Granada et al. [37] map model-based language work-
benches that can be used to generate editors for visual DSLs
and point out their features and functionalities. The authors
identify eight language workbenches for the generation of
editors for visual DSL. The features taken into considera-
tion for their analysis are the following: scope, framework,
the distinction between abstract and concrete syntax, abstract
syntax, concrete syntax, editing capabilities, use of models,
automation, usability, andmethodological basis. The conclu-
sions point out that the most complete commercial language
workbenches areMetaEdit+18 andObeoDesigner19 while the
most complete open-source ones are Eugenia,20 GMF,21

Graphiti,22 and Sirius.23 Our study differs in scope, as we
focus on tools that provide multiple notations, not only on
tools that can be used to develop editors for a single visual
DSL. Indeed, none of the tools identified by Granada et al.
support the definition of more than one (visual) concrete syn-
tax for the same abstract syntax; this means that language
engineers willing to develop blended modeling environ-
ments should either use a dedicated language workbench
for blended modeling or suitably combine the languages
produced by two or more of the language workbenches men-
tioned above.

18 https://www.metacase.com/products.html.
19 https://www.obeodesigner.com/en.
20 https://www.eclipse.org/epsilon/doc/eugenia.
21 https://www.eclipse.org/modeling/gmp.
22 https://www.eclipse.org/graphiti.
23 https://www.eclipse.org/sirius.

DoNascimento et al. [23] performa large-scale systematic
mapping study on DSLs and their related tools. The tools are
categorized into (i) tools for using DSLs, (ii) tools for creat-
ing DSLs, and (iii) language workbenches. Our study differs
from this work, as we focus on DSLs tool comparison, while
the authors provide a brief categorization of DSL tools and
do not go into the details of conducting a comparison of the
technical features. It is interesting to note that Do Nasci-
mento et al. observed that tool support for a single DSL is
well-studied in the literature, but at that time (2012) there
was little knowledge about how to support multiple DSLs
and notations in a single modeling environment. They claim
that supporting multiple DSLs and multiple notations is fun-
damental when describing large-scale industrial systems and
that methods and tool support are needed for the success of
multi-DSL development. Based on the results of our study
and the ones on multi-notation modeling (see Sect. 2.1), we
can confirm that in the last years, theMDE scientific commu-
nity actively worked and contributed to filling this research
gap.

There are additional studies related to our research that
are not systematic in nature, but their takeaways are still rel-
evant. Negm et al. [59] compare 14 language workbenches
based on (i) structure (grammar-driven or model-driven),
(ii) editor (parser-based or projectional), (iii) language nota-
tions (textual, tabular, symbols, or graphical), (iv) semantics
(translational or interpretive), and (v) composability lan-
guage aspects. However, this study is limited to language
workbenches and does not cover aspects such as synchro-
nization mechanisms and their generation, or collaborative
features. Some of the results obtained by Negm et al. are
relevant for blended modeling as well. Firstly, out of nine
analyzed parser-based language workbenches, only one (i.e.,
Ensõ) supports both textual and graphical concrete syntaxes;
this capability is achieved by having a bidirectional map-
ping between tokens in the textual representation of the
model and elements in the object graph. Moreover, all four
considered projection-based language workbenches support
multiple concrete syntaxes, with the Whole platform and
MPS supporting four different syntaxes: textual, graphical,
tabular, and symbolic. The main advantage of projection-
based workbenches is that they can rely on a shared common
representation of all modeling elements (e.g., the AST in
MPS), whereas parser-based workbenches have a dedicated
parser for each concrete syntax. One of the claimed advan-
tages of parser-based language workbenches (especially the
textual ones) is the flexibilitywith respect to themodels’ con-
formance; the textual representation of parser-based models
can still be opened and inspected, whereas projectional edi-
tors work directly on the abstract representation of themodel.
Similarly, according to Negm et al., textual parser-based
workbenches avoid tool lock-in since the modeler is not lim-

123

https://www.metacase.com/products.html
https://www.obeodesigner.com/en
https://www.eclipse.org/epsilon/doc/eugenia
https://www.eclipse.org/modeling/gmp
https://www.eclipse.org/graphiti
https://www.eclipse.org/sirius


I. David et al.

ited to using any specific editor and can be easily integrated
with other tools.

Erdweg et al. [27] conduct a comparison study of 10 lan-
guage workbenches participating in the 2013 edition of the
Language Workbench Challenge (LWC). The comparison
of the language workbenches is based on a feature model
that includes: notation, semantics, editor support, validation,
testing, and composability, where some of them support mul-
tiple notations (fully or partially). The conclusions state that
no language workbench realizes all features. However, this
study is limited to the language workbenches presented in
LWC’13. For what concerns blended modeling, the results
obtained by Erdweg et al. are in linewith the ones reported by
Negm et al. [59], where projectional language workbenches
are better supporting the combination of different concrete
syntaxes, with Enzõ and MPS again as the ones supporting
all types of concrete syntaxes. Erdweg et al. also highlight
the need for integrating “different notational styles,” which
is at the core of blended modeling.

Merkle [55] conduct a comparison study of textual lan-
guage workbenches categorizing them into pure text-based
and projectional-based with a textual projection. The lan-
guage workbenches compared in this study are Xtext,24

TEF,25 EMFText,26 and MPS.27 The language workbenches
are compared based on workflow, abstract/concrete syntax,
and editor. However, this study is limited to textual language
workbenches, while our focus is on tools that provide mul-
tiple notations. In the study by Merkle, the only language
workbench supporting a combination of concrete syntaxes is
TEF (Textual Editing Framework28), an Eclipse-based lan-
guage workbench focusing primarily on textual editors, but
with the possibility of embedding them into other editors sup-
porting other concrete syntaxes [70]. Internally, TEF follows
the background parsing strategy for the textual concrete syn-
tax, where textual models are always represented and edited
as plain text, and their parsing is demanded by a background
process. TEF also provides some basic form of blending,
where modelers can bring up a textual editor from either a
graphical or a tree-based editor (e.g., by opening a small over-
lay window); however, TEF-based modeling tools cannot be
considered as blended since model updates the embedded
textual editor is not seamlessly integrated into its host edi-
tor, and model updates are propagated on-demand to the host
editor only when the modeler closes the textual editor.

24 https://www.eclipse.org/Xtext.
25 https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.
html.
26 https://github.com/DevBoost/EMFText.
27 https://www.jetbrains.com/mps.
28 http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html.

Table 1 Goal of this study

Purpose
Issue
Object
Context
Viewpoint

Identify, classify, and analyze the user-oriented
and implementation-oriented characteristics of
existing modeling tools in relation to the princi-
ples of blended modeling from a researcher’s and
practitioner’s point of view.

3 Study design

The goal of this study is to characterize the state of the art
and the state of the practice of modeling tools in relation
to blended modeling. More specifically, we formulate such
high-level goal by using the Goal-Question-Metric perspec-
tives [7], shown in Table 1.

3.1 Process

This research was carried out by following the process
shown in Fig. 2. Our process can be divided into three main
phases, all well-established in systematic secondary studies
[46,47,64,90]: planning, conducting and documenting. In the
following, we present the three phases of the process.

3.1.1 Planning

This phase aims at defining the plan for carrying out all the
activities of this study. More specifically, we first identified
related secondary studies, i.e., surveys and literature reviews
with a scope similar to the current review’s scope (Sect. 2.4).
Subsequently, we formulated the research questions (Sect.
3.2) and compiled the research protocol.

The research protocol is a document reporting themethod-
ological details of this study. Specifically, the research
protocol contains a detailed description of all the steps we
followed in the subsequent Conducting and Documenting
phases. To mitigate potential threats to validity and any bias,
the research protocol was defined prior to conducting the
study, and it was reviewed by two experts. The experts were
asked to provide feedback on the protocol, particularly on
possible unidentified threats to validity, problems in the over-
all construction of the review, and the appropriateness of the
proposed research protocol and final reports for the aim of
this study. Both experts are well-established professors of
Computer Science, with substantial experience in empirical
research.

3.1.2 Conducting

In this phase, the mapping study is carried out according to
the research protocol. More specifically, we carry out the
following activities.

123

https://www.eclipse.org/Xtext
https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
https://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
https://github.com/DevBoost/EMFText
https://www.jetbrains.com/mps
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html


Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

Fig. 2 Overview of the whole review process

Reference set definition. The goal of this activity is to iden-
tify the modeling tools that could be part of the final set
of modeling tools. This set will serve as a guideline for the
subsequent steps of the study design, especially formulat-
ing the inclusion and exclusion criteria. The inclusion and
exclusion criteria will be tested against this set, and thus,
the reference set is subject to change until the criteria are
not final. We identify the initial reference set based on (i)
the modeling tools mentioned in related secondary studies
(Sect. 2.4); (ii) the authors’ experiences with tools partially
supporting blended modeling (e.g., [1,15]); (iii) searches in
generic web search engines; and (iv) knowledge garnered
from existing networks of experts, e.g., by accessing forums
andmailing lists (e.g., theEclipseEMFcommunity forum29).
The results of the subsequent Search and selection activity
are eventually compared to the reference set for validation
purposes. The eventual reference set is composed of the
following tools: MagicDraw [T13], Eclipse Papyrus [T11],
MetaEdit+,30 Umple [T25], and the Open Source AADL
Tool Environment (OSATE) [T17].

29 https://www.eclipse.org/forums/index.php?t=thread&frm_id=108.
30 https://www.metacase.com/products.html.

Search and selection. (Section 3.3) The goal of this activ-
ity is to identify as many (possibly blended) modeling tools
as possible. Two parallel activities are carried out: the Aca-
demic literature review, and the Grey literature review.
In both search activities, we perform a combination of
automated search, manual search, and backward-forward
snowballing [89]. These activities yield two types of artifacts:
(i) Academic studies (e.g., articles published in scientific
journals, and proceedings of scientific conferences) and (ii)
Non-academic entries (e.g., blog posts, technical reports).
Because the subject of this study are the tools these artifacts
describe, both types of artifacts are screened for a specific
Tool in the Tools identification activity. Here, we manually
analyze all academic studies and non-academic entries and
identify every modeling tool mentioned in their contents.
Moreover, in this activity, we keep track of pointers and links
referring to the relevant documentation about each tool (e.g.,
its official documentation, its wiki-based knowledge base,
etc.).
Classification framework definition. (Section 3.4) The goal
of this activity is to define the set of categories and their
possible values to classify the identified modeling tools.
Data extraction. (Section 3.5) The goal of this activity is to
collect relevant information about eachmodeling tool. In this

123

https://www.eclipse.org/forums/index.php?t=thread&frm_id=108
https://www.metacase.com/products.html


I. David et al.

activity, multiple researchers collaboratively (i) read the full
text of the relevant documentation of each modeling tool,
and (ii) populate the data extraction form with the collected
data. Upon the emergence of a new category or new possible
value in the domain of previously defined categories, the
classification framework canbe dynamically adapted. In such
cases, the previously extracted data entries are updated in
accordance with the new framework.
Data validation. (Section 3.6) To ensure the validity of the
extracted data, the tool vendors and knowledgeable experts
are contacted to review the data extracted in the previous
step.
Data analysis. (Section 3.7) The goal of this activity is to
analyze the extracted data in accordance with the research
questions. The activity involves both quantitative and quali-
tative analyses.

3.1.3 Documenting

Themain activities performed in this phase are: (i) a thorough
elaboration on the data analyzed in the previous phase with
the aim of discovering the main findings of the study; (ii)
reporting the possible threats to validity, especially the ones
identified during the definition of the review protocol; and
(iii) producing the final report. The final report is evaluated
by external reviewers and forms the basis of this article.

The complete replication package is available online31

to allow independent researchers to replicate and verify our
study, and to reuse our data for other purposes. The repli-
cation package includes the research protocol, the list of all
academic and non-academic entries considered in the search
and selection phase, the complete list of all identified tools,
raw data, the scripts for data analysis, and the details on tech-
nical requirements.

3.2 Research questions

The research questions of this study are reported below.

RQ1. What are the user-oriented characteristics of mod-
eling tools most suitable for supporting blended
modeling?
Modeling tools are designed and developed to be
adopted by specific users, application domains, and
usage scenarios.
By answering this research question, we aim to iden-
tify the external characteristics of modeling tools,
pertaining to their adoption and usage [15]. Typi-
cal examples include: supported (types of) notations,
human-computer interfaces, application domains, and
addressed user groups.

31 https://zenodo.org/record/6402743.

Practitioners can benefit from the answer to this
research question by understanding howspecific state-
of-the-art tools address their problems, what are their
limitations in terms of blended modeling, and how
they can be improved.

RQ2. What are the realization-oriented characteristics of
modeling tools most suitable for supporting blended
modeling?
With the advent of model-based approaches and
domain-specific modeling, in particular, several mod-
eling tools are being developed to support certain
levels of blending, formalisms, and semantics. More-
over, until the recent spread of mainstream language
workbenches (e.g., Xtext,32 Sirius,33 MPS,34 etc.), the
development of such modeling tools had been rela-
tively ad-hoc.
By answering this research question, we aim to iden-
tify the internal characteristics of modeling tools, and
that, in terms of (i) their features and (ii) the tech-
niques employed to implement those features. Typical
examples include: implementation platforms, consis-
tency mechanisms, change propagation, traceability,
and the linguistic level of model-to-model correspon-
dence are investigated.
Researchers can benefit from the answer to this
research question by understanding the state of the
practice on the techniques of blended modeling tools,
including the gaps to fill.

The identified research questions drive the whole study,
with a special influence on (i) the search and selection, (ii)
data extraction (including the definition of the classification
framework), and (iii) data and main findings synthesis.

3.3 Search and selection

The goal of the search and selection phase is to retrieve
a representative set of modeling tools supporting multi-
ple modeling notations, as demanded by the principles of
blended modeling. First, we perform a systematic review of
both the academic (i.e., scientific articles published at peer-
reviewed academic venues) and grey literature (i.e., websites,
online blogs, etc.) and discuss the results in Sect. 3.3.1. The
output of these two activities (i.e., academic studies and
non-academic entries) is then further analyzed in order to
identify the modeling tools either considered, mentioned, or
discussed in them (Sect. 3.3.2).

32 https://www.eclipse.org/Xtext.
33 https://www.eclipse.org/sirius.
34 https://www.jetbrains.com/mps.

123

https://zenodo.org/record/6402743
https://www.eclipse.org/Xtext
https://www.eclipse.org/sirius
https://www.jetbrains.com/mps


Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

3.3.1 Systematic reviews

We follow the same overall process when reviewing both the
academic and grey literature. In this phase, it is fundamental
to achieve a good trade-off between the coverage of exist-
ing results on the considered topic and having a manageable
number of studies to be analyzed [33,46]. To achieve the
above-mentioned trade-off, our search and selection process
has been designed as a multi-stage process; this gives us
full control over the number and characteristics of the entries
being either selected or excluded during the various stages. In
the following, we present each step of our systematic review
process. In the remainder of this report, we refer to both aca-
demic studies and non-academic entries as primary studies,
unless specifically noted otherwise. The systematic review
is divided into three subsequent and complementary steps of
(i) automatic search, (ii) application of selection criteria, and
(iii) snowballing.
Automatic search. In this step, we automatically inspect
all the results returned from a query execution on (i)
Google Scholar for academic studies and (ii) the Google
Search engine for grey literature. The automatic searches
for both academic and non-academic literature are executed
in November 2020.

For the academic literature, we use Google Scholar. We
use Google Scholar as the data source for the following
main reasons: (i) it is one of the largest and most complete
databases and indexing systems for scientific literature; (ii)
as reported in [89], the adoption of this data source has
proved to be a sound choice to identify the initial set of
literature studies for the snowballing process (Sect. 3.3.1),
producing a reasonable number of false positives, but no
false negatives (thus, no information is lost); (iii) the query
results can be automatically processed via already existing
tools.

Below we report the search string used in this study.
In order to cover as many potentially relevant studies as
possible, we defined the search string so that it includes
academic studies on blended modeling. The search string
can be divided into three main components: the first com-
ponent captures the model-driven paradigm, the second one
captures the focus on multiple entities (e.g., multiple nota-
tions) and blending, and the third one is used for ensuring
that our results focus on software aspects. To keep the
results of this initial search as focused as possible, the
query has been applied to the title of the targeted stud-
ies.

("modeling" OR "modelling" OR "model
based" OR "model driven")

AND
("multi*" OR "blended")

AND
("notation*" OR "syntax*" OR "editor"

OR "tool" OR "software")

The search string has been tested by executing pilot
searches on Google Scholar. At the time of writing, Google
Scholar produced a total of 280 hits when searching with the
reported search string.

For the grey literature, we target the regularGoogle Search
Engine. The search engine is selected in accordance with the
recommendations for including grey literature in software
engineering multi-vocal reviews [33]. The search string used
for the academic literature yields mostly academic results
even in a general web search. We have, therefore, adapted
our search strategy to find non-academic sources. In partic-
ular, we identified a number of relevant hits through manual
searches early on. These manual hits could be classified as
either lists (e.g., Wikipedia’s “List of UnifiedModeling Lan-
guage tools”) or tool-specific pages (e.g., tool vendor pages
or blog posts about how specific tools are used).

We experimented with several search strings to ensure
that we find all relevant hits. In particular, we tried to
combine different modeling languages and diagram types
into one large all-encompassing search string to simplify
our search and make it easier to extract results. How-
ever, on prototyping this approach, we realized that the
OR clauses that we used did not have the desired effect
and we did not find the tools we expected, and in particu-
lar, not the lists that we expected. In comparison, a search
string such as (MARTE) AND (tool OR editor OR
notation OR modeling)yields 162 results onGoogle,
whereas our combined search string that includedMARTE35

and many other languages only yielded 150 results.
Therefore, we decided to carry out an independent

search for popular modeling languages. We ran the different
searches independently and merged the results later on. We
selected the relevant modeling languages using a mixture of
expert knowledge, browsing the web pages of well-known
modeling tools from the reference set and beyond (e.g.,
Eclipse Capella36 and Enterprise Architect37), using lists
such asWikipedia’s page on ”Modeling Languages.”We nar-
rowed down the resulting list of around 40 potential model-
ing languages by searching for (Language Name) AND
(tool OR editor OR notation OR modelling)
in Google and analyzing the first ten non-academic hits

35 https://www.omg.org/omgmarte.
36 https://www.eclipse.org/capella.
37 https://sparxsystems.com/products/ea.

123

https://www.omg.org/omgmarte
https://www.eclipse.org/capella
https://sparxsystems.com/products/ea


I. David et al.

(i.e., search results that were not academic papers). Since
the search term explicitly contains the terms ”tool” and
”editor,” we expected that the Google search engine would
include such a tool within the first ten non-academic hits if
it exists and has any practical relevance. Experiments where
we checked later result pages for selected searches confirmed
this expectation. We thus only included modeling languages
for which Google does report a link to a modeling tool. Oth-
erwise, we disregarded it.

To address the large number of hits we would get this way,
we limited the search results for each included search string to
the first 50 unique results (if less than 50 hits are reported, we
collect all of them), which is based on the suggestion from
Garousi et al. [33]. The eventual result set included 1494
hits, typically containing blog posts, user manuals, websites,
technical reports, white papers, academic articles, etc.
Application of Selection criteria. In this step, the identified
potentially relevant entries undergo rigorous filtering based
on the application of a set of selection criteria. Following
the guidelines for systematic literature review for software
engineering [46], we define the set of inclusion and exclu-
sion criteria a priori, in order to reduce the likelihood of bias.
The potentially relevant entries are rigorously examined by
adopting multiple selection rounds in an adaptive reading
depth fashion [63]. Specifically, in the first round, the title of
the entry is examined. This first step enables us to discard all
those papers or web pages that clearly do not fall within the
scope of this study. In the second exclusion round, the intro-
duction and conclusion sections are inspected (if present).
Finally, the entries are further inspected by considering their
full text, in order to ensure that only the ones relevant to
answering the research questions are selected. While pro-
cessing the full text of a paper/web page, we also keep track
of all the mentioned modeling tools and consider them in the
tools’ identification phase (Sect. 3.3.2).

In the following, we detail the set of inclusion and exclu-
sion criteria that guide the selection of the academic and
non-academic entries for our systematic review.38 A poten-
tially relevant entry is selected if it (i) satisfies all inclusion
criteria and (ii) does not satisfy any of the exclusion crite-
ria. The selection criteria are divided into three categories,
namely: generic (i.e., they apply for both academic and non-
academic studies), academic-specific, and grey-specific. The
decision of adopting three categories of criteria originates
from the different nature of the sources we considered (i.e.,
Google Scholar and the Google Search Engine). By defin-
ing three different sets, it is possible to design selection
criteria specifically tailored to the specific characteristics of
academic and non-academic entries, and hence, improve the
overall quality of the selection process.

38 The identifiers used in this section are consistent with those used in
the replication package to enable better traceability.

Generic inclusion criteria:

(GEN-I1) Entries on modeling tools, i.e., where models are
used as first-class entities and used as a substan-
tial abstraction from the problem domain (e.g.,
OSATE [T17] for modeling hardware/software
systems according to the AADL modeling lan-
guage).

(GEN-I2) Entries discussing at least two different notations
(possibly for the same abstract syntax). The nota-
tions can be of the same type (e.g., both textual).

Generic exclusion criteria:

(GEN-E1) Entries on non-modeling tools. For example, arti-
cles on IDEs, programming tools, drawing tools,
etc.

(GEN-E2) Entries that are not in English.
(GEN-E3) Duplicates of already included entries.
(GEN-E4) Entries that are not available, and hence not ana-

lyzable (e.g., the full text of a scientific article is
not accessible or the link to aweb page is broken).

Exclusion criteria specific to academic sources:

(A-E1) Studies in the form of full proceedings and books
since they are too broad for being thoroughly ana-
lyzed in this phase of the study.

(A-E2) Studies that have not been peer-reviewed, as peer-
reviewing is the de facto standard of quality assur-
ance for scientific literature.

Exclusion criteria specific to grey literature:

(G-E1) Web pages reporting exclusively the basic princi-
ples of modeling techniques, without mentioning
any modeling tool.

(G-E2) Web pages reporting exclusively abstract best prac-
tices while applying modeling techniques.

(G-E3) Web pages reporting an implementation without a
discussion of its benefits and/or drawbacks.

(G-E4) Academic literature, since such type of studies is
considered by a different process in our protocol.

(G-E5) Videos, podcasts, and webinars since they are too
time-consuming to be considered for this phase of
the study.

Snowballing. In this step, we complement the preliminary
set of academic studies by applying the snowballing proce-
dure [89]. To mitigate a potential bias with respect to the
construct validity of the study, backward and forward snow-
balling is used to complement the automatic search of the
academic literature [38]. In particular, this process is carried

123



Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

out by considering the scientific publications selected in the
initial automatic search, and subsequently selecting relevant
studies among those cited by one of the initially selected
ones (backward snowballing). Then, we also perform for-
ward snowballing, i.e., selecting relevant studies among those
citing one of the initially selected academic studies [89]. In
this context, the Google Scholar39 bibliographic database is
adopted to retrieve the studies citing the ones selected through
the initial search phase. The final decision about the inclusion
of the newly considered publications in the study is based on
the application of the selection criteria presented in Sect. 3.3.

3.3.2 Tool identification

In the tool identification activity, each primary study is
manually analyzed and the mentioned modeling tools are
identified. This is achieved by investigating the full text of
each primary study, and collecting every modeling tool men-
tioned in it, independently of whether it is blended or not.
Then, the set of identified modeling tools is filtered for dupli-
cates, which are subsequently merged, regardless of whether
the tool originates from an academic or a non-academic
source. After the merge, we obtained a total of 133 modeling
tools. For each tool, we have collected the following informa-
tion: (i) name, (ii) link/reference to official documentation,
(ii) organization(s) implementing, maintaining, and support-
ing the tool, and (iii) tracing information toward all primary
studies mentioning the tool.

In order to ensure that the identified tools support us in
answering the research questions of this study, we further fil-
ter the list of all modeling tools according to a set of selection
criteria. Belowwe report the inclusion and exclusion criteria.

(TI1) The tool allows its users to edit the same model in
multiple notations. The user can switch between these
notations easily and without an extra processing step
(i.e., the tool supports some level of blended model-
ing). The tool allows a certain degree of temporary
inconsistencies. Notations like an overview tree for
navigation purposes or any textual representation used
for file persistency purposes only are not considered
(e.g., XMI).

(TI2) The tool is publicly available (either as an open-source
or commercial product).

(TI3) The documentation of the tool is publicly available.

(TE1) The tool is a language workbench. (Our study focuses
on modeling tools themselves.)

(TE2) The tool is not available for download as a binary
that can be run on current operating systems from an

39 https://scholar.google.com.

official website or an affiliated platform supporting it
(e.g., a GitHub repository).

(TE3) The documentation of the tool is not in English.

A potentially relevant modeling tool is included if it sat-
isfies all inclusion criteria (TI1-TI3), and discarded if it
satisfies any exclusion criterion (TE1-TE2).

To minimize bias, this activity is performed by five
researchers and organized as follows. First, two researchers
are randomly assigned to each of the potentially relevant
tools. Then, the researchers independently apply the tool
selection criteria to their assigned tools; each researcher
could mark a tool as included, excluded, maybe. For
the 12 of 133 tools where at least one researcher indicates an
uncertainty (maybe), the conflicts are resolvedwith the inter-
vention of a randomly assigned third researcher and, when
needed, discuss plenary among all researchers involved in
this study.

After the final set of modeling tools has been established,
we check whether each tool in the reference set is also
included in this final set of tools. If all tools in the reference set
are indeed included in the final set of tools, we continue with
the subsequent phases of the protocol (i.e., data extraction).
Otherwise, a dedicated meeting is set up, and a refinement
of the systematic review process is designed and conducted
again.
Eventually, the final list of modeling tools contains all tools
of the reference set.

Figure 3 shows the different steps performed in the search
and selection phase. Out of the 467 papers in the initial sci-
entific search, 44 papers were included in the snowballing
process. The snowballingwasperformed four times before no
more new papers were included. During this process, a total
of 2134 cited and 3623 referenced papers were reviewed. In
summary, 68 distinct tools were extracted from the included
papers. For the grey literature part, 30 relevant languages
were identified as described above, for which the different
search terms yielded 1494 distinct websites. After applying
the selection criteria, 68 tools were included in the tools set.
Merging the academic and grey literature parts resulted in
133 distinct tools, of which 30 tools were selected according
to the tool selection criteria. Two tools had to be excluded
during the data extraction process due to lack of availability
or semantically out of scope (see Sect. 3.4). Eventually, 26
modeling tools were sampled, shown in the Referred Tools
section at the end of this paper.

3.4 Classification framework definition

Table 2 shows the classification framework of this study. The
classification framework is composed of three distinct facets;
the first facet is about generic characteristics of modeling

123

https://scholar.google.com


I. David et al.

Table 2 Categories of the classification framework, and their domain

Category Definition Type/domain

Generic

Meta

Tool ID The internally used ID of the tool ”T”+[numeric]

Name The name of the tool Free text

Analyzed release The version of the release the analysis was carried out on Free text

Tool

First release Date of the first available release Date

Latest release Date of the latest available release Date

Motivation The self-declared motivation of the tool Free text

Open-source Whether the tool’s sources are available openly {Yes, No}

Web-based Whether the tool is web-based {Yes, No}

Collaboration The degree and type of support for collaboration {No, Asynchronous,
Synchronous}

RQ1: User-oriented characteristics

Notations

Notation types Types of notations supported by the tool {Textual, Graphical,
Tabular, Tree-based,
Mixed textual-graphical}

Notation instances (number of) Sum number of instances of notation types Numeric

Embedded notations Whether there are notations that are embedded into each
other

{Yes, No}

Overlap The degree of overlap between notations {None, Partial, Complete}

Visualization and navigation

Visualize multiple notations The ability to visualize more than one notations {Yes, No}

Synchronous navigation Whether the tool supports a synchronous navigation of
multiple visualized notations

{Yes, No}

Navigation among notations The dynamics of navigation between different notations {Immediate, Complex}

Flexibility

Flexibility—models Whether the tool supports temporary inconsistency at the
level of the instance models

{Yes, No}

Flexibility—language Whether the tool supports temporary inconsistency at the
level of the language

{Yes, No}

Flexibility—persistence Whether the tools can persist inconsistent models {Yes, No}

RQ2: Realization-oriented characteristics

Mapping and platforms

Mapping The way concrete and abstract syntax are mapped {Parser-based,
Projectional}

Platform The platform the tool is built on {Eclipse, Other}

Change propagation and traceability

Change propagation The dynamics of propagating changes across notations {Sequential, Concurrent}

Traceability Whether the tool supports explicit traceability between
notations

{Yes, No}

Inconsistency management

Inconsistency visualization The degree and way the tool visualizes inconsistencies {No, Internal, External}

Inconsistency management type The way the tool manages inconsistencies {On-the-fly, On-demand,
Preventive}

Inconsistency management automation The degree of automation of inconsistency management
activities

{Manual, Partial,
Automated, Not
applicable}

123



Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

Fig. 3 Overview of the conducted search and selection steps

tools (e.g., release dates, vendor, main motivation for blend-
ing notations); the second and third facets directly address
research questions RQ1 and RQ2.

We partially reuse the results of previouswork [15] related
to blended modeling for defining the initial version of the
classification framework. Then, as suggested in [90], the cus-
tomization of the classification framework is performed as
follows: (i) firstly, we select a random sample of 10modeling
tools, (ii) then, two researchers independently extract the data
from the 10 modeling tools by using the initial version of the
classification framework, (iii) the two researchers then dis-
cuss the results of the data extraction with a third researcher,
with a special focus on too generic/abstract parameters,
parameters which did not fully fit with the characteristics
of the tools, parameters with redundant values, and recur-
rent missing concepts, (iv) the classification framework is
customized according to the discussion, and lastly (v) the
final version of the classification framework is applied to
all remaining modeling tools. It is important to note that
when analyzing the remaining 26 tools, the classification
framework can still be enriched/updated based on the char-
acteristics of the currently analyzed tool. The details about
how we extracted data for each modeling tool are provided
in the next section.

3.5 Data extraction

The main goal of this activity is to extract relevant data about
eachmodeling tool for answering the research questions. The
inputs to this activity are: (i) the set of 28 modeling tools, out
of which 26 remained after excluding two additional tools
during this phase; and (ii) the textual contents of the academic
studies and non-academic entries referring to the tools, and
the tools’ official documentation (when publicly available).
Moreover, whenwe are not able to collect all relevant data for
some specific aspects of a tool (e.g., the internal consistency

mechanisms of a proprietary tool), we perform a series of ad
hocWeb searches and contact the support team of the tool for
collecting the missing data. For the sake of external verifia-
bility, full tracing information is kept between the extracted
data and the considered data sources and it is included in the
replication package of the study.

To carry out a rigorous data extraction process, and to ease
the control and the subsequent analysis of the extracted data,
a predefined data extraction form is designed prior to the
data extraction process. The structure of the data extraction
form is based on the various categories of the classification
framework.

3.6 Data validation

To ensure the validity of the extracted data, the tool vendors
are contacted and the data and the explanationof the reference
framework are made available to them. If a tool does not
have a clearly identified vendor, we identify knowledgeable
experts who published scientific papers related to the tool.
The vendors and experts are asked to identify any invalid
data related to their tool. The contact is initiated via email
with the vendors and experts having an option to ask and
discuss the details with our research team. The majority of
interactions happened in email. Some vendors and experts
preferred a live discussion during a video call, which we also
accommodated.

Eventually, we have contacted vendors and experts of 24
tools. The authors of this paper have developed or exten-
sively contributed to the remaining 2 tools, and validated
them internally. The validation phase ran for three weeks,
between February 28 and March 22, 2022. 69% of tool ven-
dors or experts replied either with minor change suggestions
or with the approval of the extracted data. Based on their
responses, 3.8% of the data (20 of 520 records) has been

123



I. David et al.

Table 3 Relationships between blended aspects (BA) and the research questions (RQ) of this study

RQ1: User-oriented characteristics RQ2: Realization-oriented characteristics
(Section 4.2) (Section 4.3)

BA1: Multi-notation Notations Mapping and platforms

(Section 4.2.1) (Section 4.3.1)

BA2: Seamless interaction Visualization and navigation Change propagation, traceability

(Section 4.2.2) (Section 4.3.2)

BA3: Flexibility Model/language/persistence flexibility Inconsistency management and tolerance

(Section 4.2.3) (Section 4.3.3)

updated. Themost changes, five,were observed in themodel-
level flexibility category.

3.7 Data analysis

Thedata analysis activity involves collating and summarizing
the data, aiming at understanding, analyzing, and classifying
the state of the art of modeling tools [47, § 6.5]. The data
synthesis is divided into two main phases: vertical analysis
and horizontal analysis. In both cases, we perform a com-
bination of content analysis [31] (mainly for categorizing
and coding tools under broad thematic categories) and nar-
rative synthesis [68] (mainly for detailed explanation and
interpretation of the findings coming from the content anal-
ysis). When performing vertical analysis, we analyze the
extracted data to find trends and collect information about
each category of the classification framework. When per-
forming horizontal analysis, we analyze the extracted data
to explore possible relations across different categories of
the classification framework.

3.7.1 Vertical analysis

Depending on the parameters of the classification framework,
in this research, we apply both quantitative and qualitative
synthesis methods, separately. When considering quantita-
tive data, depending on the specific data to be analyzed, we
apply descriptive statistics for a better understanding of the
data. When considering qualitative data, we apply the line
of argument synthesis [90], that is: firstly, we analyze each
tool individually to document it and tabulate its main features
with respect to each specific parameter of the classification
framework, then we analyze the set of tools as a whole, to
reason on potential patterns and trends. When both quanti-
tative and qualitative analyses are completed, we integrate
their results to explain quantitative results by using quali-
tative results [47, § 6.5]. The results are discussed in Sect.
4.

3.7.2 Horizontal analysis

Following the best practice of previous secondary studies
[14,20,22,30],we explore significant phenomena across pairs
of categories as well. We use contingency tables annotated
with the Chi-square statistic at α = 0.05, for identifying
statistically significant cases. Following the directions of
Haviland [40], we report the p values of the conventional
Chi-square test without Yates’s correction for continuity. The
results are discussed in Sect. 5.

4 Results

In this section, we elaborate on the findings of this study.
First, we discuss the general findings in Sect. 4.1. Then, we
elaborate on the two research questions of our study: the user-
oriented characteristics (RQ1) and the realization-oriented
characteristics (RQ2) of the sampled tools, in Sects. 4.2 and
4.3, respectively. In both cases, we contextualize our findings
in terms of the three core blended modeling aspects: multi-
notation, seamless interaction, and flexibility, as shown in
Table 3.

4.1 Overview

In this section,we review someof the general findings regard-
ing the analyzed blended modeling tools. The list of the
included tools is shown in Table 4.
Project age and timeline. The tools and their respective
projects spreadover 25years,withSOM/ADOxx [T20] being
the oldest tool (first release in 1996) in our sample. On aver-
age, the age of the tool projects is 10.6 years (σ = 5.9).
The means of the first and last releases are 2008.8 (σ = 5.9)
and 2019.4 (σ = 1.8), respectively. These numbers suggest
a sample of mature enough tools with sufficient recency in
termsof the latest release. Figure 4provides a visual overview
of the age and timeline of tool projects.
Motivations. The self-declared motivations of the tools vary
greatly. We have recorded the mission statements of the tools
and clustered them. General-purpose modeling tools are typ-

123



Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

Ta
bl
e
4

T
he

lis
to

f
in
cl
ud
ed

to
ol
s

R
el
ea
se
s

In
fo

ID
N
am

e
V
en
do

r/
M
ai
nt
ai
ne
r

Fi
rs
t

L
at
es
t

A
na
ly
ze
d

O
pe
n-
so
ur
ce

Se
lf
-d
ec
la
re
d
m
ot
iv
at
io
n

[T
01
]

A
D
O
IT
:C

om
m
u-

ni
ty

E
di
tio

n
B
O
C

Pr
od
uc
ts

&
Se

rv
ic
es

A
G

20
03

20
20

A
D
O
IT
:C
E
ba
se
d

on
A
D
O
IT

12
.0

N
o

E
nt
er
pr
is
e
ar
ch
ite
ct
ur
e
m
an
ag
em

en
t

[T
02
]

A
rc
hi

B
ea
uv
oi
r,

P
an
d

Sa
rr
od
ie
,J
B

20
10

20
21

4.
8.
1

Y
es

E
nt
er
pr
is
e
ar
ch
ite
ct
ur
e

[T
03
]

A
R
IS

So
ft
w
ar
e
A
G

20
09

20
17

2.
4d

-
7.
1.
0.
11
61
38
9

N
o

B
us
in
es
s
pr
oc
es
s
m
od
el
in
g

[T
04
]

A
SC

E
T

D
ev
el
-

op
er

E
TA

S
20
02

20
20

7.
6.
0

B
ui
ld

ID
20
9

N
o

”e
as
ily

co
m
bi
ne

te
xt
s
an
d
gr
ap
hi
cs

su
iti
ng

yo
ur

pr
o-

gr
am

m
in
g
ne
ed
s”

[T
05
]

A
To

M
PM

U
ni
ve
rs
ité

de
M
on
tr
éa
l

20
13

20
20

0.
8.
5

Y
es

M
ul
ti-
pa
ra
di
gm

m
od
el
in
g
on

th
e
w
eb

[T
06
]

B
le
nd

ed
Pr
ofi

le
M
äl
ar
da
le
n

U
ni
-

ve
rs
ity

20
18

20
20

0.
3

Y
es

B
le
nd
ed

m
od
el
lin

g
fo
r
U
M
L
pr
ofi

le
s

[T
07
]

B
os
to
n

V
ie
v

20
15

20
20

5.
0

N
o

Fa
ct
-b
as
ed

m
od
el
in
g

vi
a

O
bj
ec
t-
R
ol
e

M
od
el
in
g

(O
R
M
)

[T
08
]

C
ar
da
ni
t

E
ST

E
C
O
Sp

A
20
13

20
20

O
nl
in
e

@
07
.0
4.
20
21
.

N
o

M
od
el
in
g
B
PM

N
w
ith

di
ag
ra
m
s
an
d
ta
bu
la
r
vi
ew

s

[T
09
]

C
er
tw
ar
e

N
A
SA

20
13

20
16

2.
0

Y
es

Sa
fe
ty

ca
se

m
od
el
in
g

[T
10
]

D
B
D
ia
gr
am

s
H
ol
is
tic

s
So

ft
-

w
ar
e

20
18

20
21

O
nl
in
e

@
07
.0
4.
20
21
.

N
o

V
is
ua
liz

e
te
xt
ua
lD

B
sc
he
m
a
de
fin

iti
on

[T
11
]

E
cl
ip
se

Pa
py
ru
s

T
he

E
cl
ip
se

Fo
un
da
tio

n
20
08

20
20

5.
0.
0

Y
es

G
en
er
ic
-p
ur
po
se

M
B
SE

to
ol
,b
as
ed

on
U
M
L
an
d
pr
o-

vi
di
ng

su
pp
or
tf
or

D
SL

s
vi
a
U
M
L
Pr
ofi

le
s

[T
12
]

E
cl
ip
se

Pr
o-

ce
ss

Fr
am

ew
or
k

Pr
oj
ec
t

T
he

E
cl
ip
se

Fo
un
da
tio

n
20
06

20
18

1.
5.
2

Y
es

So
ft
w
ar
e
pr
oc
es
s
m
od
el
in
g

[T
13
]

M
ag
ic
D
ra
w

C
A
T
IA

N
o
M
ag
ic

19
98

20
21

M
ag
ic
D
ra
w

20
21
x

LT
R

E
nt
er
pr
is
e

N
o

M
od

el
lin

g
to
ol

th
at

fa
ci
lit
at
es

an
al
ys
is

an
d
de
si
gn

of
O
bj
ec
t
O
ri
en
te
d

(O
O
)
sy
st
em

s
an
d

da
ta
ba
se
s.

It
pr
ov
id
es

co
de

en
gi
ne
er
in
g
m
ec
ha
ni
sm

(w
ith

fu
ll

ro
un
d-
tr
ip

su
pp
or
t
fo
r
Ja
va
,
C
+
+
,
C
#,

C
L

(M
SI
L
)

an
d
C
O
R
B
A

ID
L
pr
og
ra
m
m
in
g
la
ng
ua
ge
s)
,
as

w
el
l

as
da
ta
ba
se

sc
he
m
a
m
od
el
in
g,

D
D
L
ge
ne
ra
tio

n
an
d

re
ve
rs
e
en
gi
ne
er
in
g
fa
ci
lit
ie
s

123



I. David et al.

Ta
bl
e
4

co
nt
in
ue
d

R
el
ea
se
s

In
fo

ID
N
am

e
V
en
do

r/
M
ai
nt
ai
ne
r

Fi
rs
t

L
at
es
t

A
na
ly
ze
d

O
pe
n-
so
ur
ce

Se
lf
-d
ec
la
re
d
m
ot
iv
at
io
n

[T
14
]

m
bd
ed
dr

ite
m
is
A
G

20
12

20
18

20
18
.2
.0
ba
se
d
on

M
PS

20
18
.2
.6

Y
es

”B
oo

st
in
g
pr
od

uc
tiv

ity
an
d
qu

al
ity

by
us
in
g
ex
te
ns
i-

bl
e
D
SL

s,
fle
xi
bl
e
no

ta
tio

ns
an
d
in
te
gr
at
ed

ve
ri
fic

a-
tio

n
to
ol
s.
”

[T
15
]

M
E
M
O
4A

D
O

O
M
iL
A
B

20
15

20
18

1.
10

N
o

M
ul
ti-
Pe
rs
pe
ct
iv
e
E
nt
er
pr
is
e
M
od
el
in
g

[T
16
]

M
od
el
io

M
od
el
is
of
t

20
11

20
20

4.
1.
0

(2
02
00
12
32
13
1)

Y
es

G
en
er
ic
m
od
el
in
g
to
ol

fo
r
U
M
L
,B

PM
N
,A

rc
hi
M
at
e,

Sy
sM

L
,e
tc

[T
17
]

O
SA

T
E

C
ar
ne
gi
e

M
el
lo
n

U
ni
ve
rs
ity

20
04

20
21

2.
9.
1

Y
es

A
A
D
L
is
a
la
ng
ua
ge
,w

ith
di
ff
er
en
tr
ep
re
se
nt
at
io
ns
.A

te
xt
ua
lr
ep
re
se
nt
at
io
n
pr
ov
id
es

a
co
m
pr
eh
en
si
ve

vi
ew

of
al
ld

et
ai
ls
of

a
sy
st
em

,a
nd

gr
ap
hi
ca
li
f
on

e
w
an
tt
o

hi
de

so
m
e
de
ta
ils
,a
nd

al
lo
w
fo
r
a
qu

ic
k
na
vi
ga
tio

n
in

m
ul
tip

le
di
m
en
si
on

s

[T
18
]

Q
ui
ck
D
at
aB

as
eD

ia
gr
am

s
D
ov
et
ai
l

Te
ch
-

no
lo
gi
es

L
td

20
02

20
21

O
nl
in
e

@
07
.0
4.
20
21
.

N
o

M
od
el
in
g
D
B
sc
he
m
as

by
te
xt

an
d
di
ag
ra
m

[T
19
]

Se
qu
en
ce
D
ia
gr
am

O
rg

–
20
14

20
21

O
nl
in
e
-
9.
1.
1

N
o

Im
pr
ov
e
th
e
ef
fic
ie
nc
y
w
he
n
cr
ea
tin

g
an
d
w
or
ki
ng

w
ith

se
qu

en
ce

di
ag
ra
m
s
by

co
m
bi
ni
ng

te
xt

no
ta
tio

n
sc
ri
pt
in
g
an
d
dr
aw

in
g
by

cl
ic
ki
ng

an
d
dr
ag
gi
ng

in
th
e

sa
m
e
m
od
el

[T
20
]

SO
M
/A
D
O
xx

O
M
iL
A
B

19
96

20
14

SO
M

3.
0

on
A
D
O
xx

1.
5

N
o

Se
m
an
tic

O
bj
ec
tM

od
el
.C

om
pr
eh
en
si
ve

ap
pr
oa
ch

fo
r

ob
je
ct
-o
ri
en
te
d
an
d
se
m
an
tic

m
od

el
in
g
of

bu
si
ne
ss

sy
st
em

s

[T
21
]

Sw
im

la
ne
s

–
20
14

20
21

O
nl
in
e

@
07
.0
4.
20
21
.

N
o

V
is
ua
liz

e
se
qu

en
ce

di
ag
ra
m
s

[T
22
]

To
pB

ra
id

C
om

-
po

se
r

M
ae
st
ro

E
di
tio

n

To
pQ

ua
dr
an
t,
In
c

20
06

20
21

7.
1.
0

N
o

”T
op
B
ra
id

C
om

po
se
rT

M
M
ae
st
ro

E
di
tio

n
(T
B
C
-M

E
)

is
a
co
m
pr
eh
en
si
ve

K
no
w
le
dg
e
G
ra
ph

m
od
el
in
g
an
d

SP
A
R
Q
L
qu
er
y
to
ol
.I
n
us
e
by

th
ou
sa
nd
s
of

co
m
m
er
-

ci
al

cu
st
om

er
s,
C
om

po
se
r
of
fe
rs

ro
bu
st
an
d
co
m
pr
e-

he
ns
iv
e
su
pp
or
tf
or
bu
ild

in
g
an
d
te
st
in
g
co
nfi

gu
ra
tio

ns
of

ri
ch

kn
ow

le
dg
e
gr
ap
hs
.”

[T
23
]

U
M
L
et

T
U
W
ie
n

20
02

20
18

14
.3

St
an
da
lo
ne

Y
es

A
llo

w
te
xt
ua
l+
vi
su
al
m
od
el
in
g
of

U
M
L
di
ag
ra
m
s

[T
24
]

U
M
L
et
in
o

T
U
W
ie
n

20
13

20
18

14
.3

Y
es

A
llo

w
te
xt
ua
l+
vi
su
al
m
od
el
in
g
of

U
M
L
di
ag
ra
m
s

[T
25
]

U
m
pl
e

U
ni
ve
rs
ity

of
O
tta
w
a

20
08

20
20

O
nl
in
e

-
1.
30
.1
.5
09
9

.6
05
69
f3
35

Y
es

Su
pp
or
tt
he

co
nv
en
ie
nt
m
od
el
in
g
ac
ro
ss
di
ff
er
en
tf
or
-

m
al
is
m
s.
N
o
pa
rt
ic
ul
ar

do
m
ai
n
ta
rg
et
ed
,
th
us
,
it’
s
a

pr
et
ty

ab
st
ra
ct
to
ol
.

[T
26
]

U
SE

U
ni
ve
rs
itä
t

B
re
-

m
en

20
07

20
20

6.
0.
0

Y
es

Sy
st
em

m
od
el
in
g
vi
a
a
su
bs
et
of

U
M
L
+
O
C
L

123



Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

Fig. 4 Overview of the age of the tool projects, spanned by their respec-
tive first and last releases

Table 5 The web-based nature of tools

Web-based #Tools Tools

No 17 (65%) [T02], [T03], [T04], [T06], [T07],
[T09], [T11], [T12], [T13], [T14],
[T15], [T16], [T17], [T20], [T22],
[T23], [T26]

Yes 9 (35%) [T01], [T05], [T08], [T10], [T18],
[T19], [T21], [T24], [T25]

ical in our sample, usually offering multi-notation support
for UML-based modeling, e.g. Modelio [T16], USE [T26],
and Papyrus [T11]. Some of these tools are very specific
about their intentions to combine or augment the traditional
graphical notation of UML with textual elements, such as
UMLet [T23] and ETAS ASCET Developer [T04]. Among
the tools with specific modeling purposes are the ones aim-
ing at process modeling (e.g., SOM/ADOxx [T20], ARIS
[T03]), database modeling (e.g., DBDiagram [T10], Quick-
DBD [T18]), and enterprise architecture (e.g., Archi [T02],
ADOIT [T01]).
Web-based implementation. We have found that the major-
ity of the sampled tools, 17 of 26 (65%), are exclusively
desktop-based applications, as shown in Table 5.
Open-source.Half of the sampled tools are released as open-
source software (Table 6), allowing access to the source code
of the tool.
Collaboration. Collaborative modeling is the joint creation
of a shared representation of a system through means of
modeling [20,30]. Collaboration enables an orchestrated

Table 6 The open-source nature of tools

Open-source #Tools Tools

No 13 (50%) [T01], [T03], [T04], [T07], [T08],
[T10], [T13], [T15], [T18], [T19],
[T20], [T21], [T22]

Yes 13 (50%) [T02], [T05], [T06], [T09], [T11],
[T12], [T14], [T16], [T17], [T23],
[T24], [T25], [T26]

Table 7 Support for collaboration

Collaboration #Tools Tools

No 11 (42%) [T03], [T06], [T09], [T11], [T12],
[T15], [T19], [T20], [T21], [T22]
[T26]

Yes: Off-line 9 (35%) [T02], [T04], [T13], [T14], [T16],
[T17], [T23], [T24], [T25]

Yes: Real-time 6 (23%) [T01], [T05], [T07], [T08], [T10],
[T18]

interplay among stakeholders of different domains, and
thus, very often, collaboration raises the need for multiple
different notations. In real-time collaborative settings, the
groupwork of stakeholders happens synchronously. Off-line
collaborative settings do not assume synchronicity, but rather
stakeholders who work on shared models at different times.
As shown in Table 7, the majority of tools, 15 of 26 (58%),
provides some means of collaboration. Specifically, off-line
techniques are typical, accounting for 9 of 15 collabora-
tive tools (60%) or 9 of 26 tools overall (35%), respectively.
Finally, 11 of 26 sampled tools (42%) do not support any
means of collaboration.

4.2 User-oriented characteristics (RQ1)

In this section, we discuss the findings related to the
user-oriented characteristics of the sampled tools. We con-
textualize our findings in terms of the three aspects of
blended modeling tools: the support for multiple notations
(Sect. 4.2.1), seamless interaction (Sect. 4.2.2), and flexibil-
ity (Sect. 4.2.3).

4.2.1 Notations

Notation types.As shown in Fig. 5a and Table 8, the majority
of tools, 5 of 26 (19%), support two types of notation, with
additional nine tools supporting three types, and two tools
supporting four types.

Every tool, 26 of 26 (100%), features a graphical notation.
Textual notations are supported by 19 tools. Additional 13
tools were found with a support for tabular notations, and

123



I. David et al.

(a) (b)

Fig. 5 Number and combinations of notation types

Table 8 Number of supported notation types

#Notation types #Tools Tools

2 15 (58%) [T01], [T03], [T04], [T05], [T08],
[T09], [T10], [T15], [T18], [T19],
[T20], [T21], [T23], [T24], [T25]

3 9 (35%) [T02], [T06], [T12], [T11], [T13],
[T14], [T16], [T17], [T26]

4 2 (8%) [T07], [T22]

seven with a support for tree-like notations. This information
is detailed in Fig. 5b and Table 9.
Embedded notations. We found a single occurrence of
embedded notations, i.e., a host notation being enriched by
fragments of another notation (Table 10). While the host
notation is prevalent during the entirety of the interaction,
the embedded notation is accessible in a specific subset of
the host notation. For example, in the Statecharts +
Class Diagrams (SCCD) formalism [78], Class Dia-
gram fragments are used to augment the Statecharts formal-
ism and provide structural information to compose complex
systems.
Overlap. As shown in Table 11, the majority of tools, 21 of
26 (81%), comes with notations that are not fully overlap-
ping. This means that different notations provide different
modeling aspects in these tools. An example of full overlap

Table 9 Support for specific notation types

Notation type #Tools Tools

Graphical 26 (100%) [T01], [T02], [T03], [T04], [T05],
[T06], [T07], [T08], [T09], [T10],
[T11], [T12], [T13], [T14], [T15],
[T16], [T17], [T18], [T19], [T20],
[T21], [T22], [T23], [T24], [T25],
[T26]

Textual 19 (73%) [T02], [T04], [T05], [T06], [T07],
[T10], [T12], [T11], [T14], [T16],
[T17], [T18], [T19], [T21], [T22],
[T23], [T24], [T25], [T26]

Tabular 13 (50%) [T01], [T03], [T07], [T08], [T09],
[T12], [T13], [T14], [T15], [T16],
[T20], [T22], [T26]

Tree 7 (27%) [T02], [T06], [T07], [T11], [T13],
[T17], [T22]

Table 10 Support for embedded languages

Embedded languages #Tools Tools

No 25 (96%) [T01], [T02], [T03], [T04], [T05],
[T06], [T07], [T08], [T09], [T10],
[T11], [T12], [T13], [T15], [T16],
[T17], [T18], [T19], [T20], [T21],
[T22], [T23], [T24], [T25], [T26]

Yes 1 (4%) [T14]

Table 11 Overlap between notations

Overlap #Tools Tools

Partial 21 (81%) [T01], [T02], [T03], [T04], [T05],
[T06], [T07], [T08], [T09], [T11],
[T12], [T13], [T15], [T16], [T17],
[T20], [T22], [T23], [T24], [T25],
[T26]

Complete 5 (19%) [T10], [T14], [T18], [T19], [T21]

is where a graphical state machine language can render a
state machine model with every structural feature; whereas
a table only shows which states have transitions to which
states.

4.2.2 Visualization and navigation

Usability aspects in general are hard to measure. To gain
reliable results, it is necessary to conduct a complex user
study with concrete tasks, a larger number of participants,
interviews and/or surveys, and a thorough evaluation of the
answers. This is not feasible in the context of this study,
and therefore, we decided to focus on usability aspects that
are i) easily measured objectively and ii) specific to blended
modeling.

123



Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

We do not consider the usability of modeling languages
themselves as discussed in [57] and [6]. Instead, we focus
on the usability of the tools in terms of the topics that are
crucial for blended modeling. The idea of blended modeling
is to use the notation that is best suited for the current task at
hand. This makes it necessary to switch frequently between
the available notations. Therefore, for pleasant usability with
good support for the user, a tool must offer the possibility
to visualize multiple notations side by side and/or provide
seamless navigation betweennotations, or even synchronized
navigation. To clarify this more focused view of usability, we
use the term “seamless interaction”.
Visualization ofmultiple syntaxes. In general, a blendedmod-
eling tool must have the ability to support multiple concrete
syntaxes of the same abstract syntax. This parameter, in par-
ticular, addresses the possibility of simultaneously viewing
multiple notations within a modeling tool, e.g., side-by-side
or in an integrated manner such as projectional editors as
mbeddr [T14] do. All 26 identified tools support the simul-
taneous view of two or more notations.
Synchronized navigation. In addition to the previous parame-
ter, this parameter investigates whether the navigation across
multiple notations in the models’ editors is synchronized.
For instance, this can be the case in a side-by-side view,
if an element in one notation is selected, also its corre-
sponding element in the other notation is selected. Another
example of such synchronized navigation is the usage of
the double click feature to jump between different views
showing corresponding elements but belonging to different
notations. As shown in Table 12, more than half of the tools,
16 of 26 (62%), provides synchronized navigation facilities.
Navigation among notations. Blended modeling tools intro-
duce the benefit that the same model can be viewed and
modified using different notations. To enable a fluent mod-
eling experience, the effort required to navigate across
notations should be minimal. This binary parameter clas-
sifies the effort. It can be either immediate (e.g., a click or
a keyboard shortcut), or it can involve more complex steps,
such as the navigation through multiple (context) menus or
wizards. As shown in Table 13, the majority of tools, 20 of
26 (77%), provide immediate navigation from one notation
to the other, suggesting a better user experience in terms of
seamless interaction.

4.2.3 Flexibility

Flexibility is the user-related embodiment of tolerating ver-
tical and horizontal inconsistencies [83] at various levels of
abstraction in themodeling stack and various modeling facil-
ities. In this study, we specifically consider three types of
flexibility, as follows.
Flexibility—models. As shown in Table 14, the majority of
tools, 19 of 26 (73%), does not provideflexibility at themodel

Table 12 Support for synchronized navigation

Sync’d navigation #Tools Tools

Yes 16 (62%) [T02], [T03], [T05], [T06], [T07],
[T08], [T10], [T12], [T13], [T14],
[T16], [T18], [T19], [T21], [T22],
[T25]

No 10 (38%) [T01], [T04], [T09], [T11], [T15],
[T17], [T20], [T23], [T24], [T26]

Table 13 Navigation among notations

Navigation #Tools Tools

Immediate 20 (77%) [T02], [T03], [T04], [T05], [T06],
[T07], [T08], [T10], [T11], [T12],
[T13], [T14], [T15], [T16], [T18],
[T19], [T20], [T21], [T22], [T25]

Complex 6 (23%) [T01], [T09], [T17], [T23], [T24],
[T26]

Table 14 Support for model-level flexibility

Flexibility: models #Tools Tools

No 19 (73%) [T01], [T02], [T03], [T05], [T06],
[T08], [T09], [T11], [T13], [T14],
[T16], [T17], [T19], [T20], [T21],
[T22], [T23], [T24], [T26]

Yes 7 (27%) [T07], [T12], [T04], [T10], [T15],
[T18], [T25]

Table 15 Support for language-level flexibility

Flexibility: language #Tools Tools

No 22 (85%) [T01], [T02], [T03], [T04], [T05],
[T06], [T07], [T08], [T09], [T10],
[T12], [T11], [T13], [T15], [T16],
[T18], [T19], [T20], [T21], [T23],
[T24], [T26]

Yes 4 (15%) [T14], [T17], [T22], [T25]

Table 16 Support for persistence flexibility

Flexibility: persistence #Tools Tools

No 22 (85%) [T01], [T02], [T03], [T05], [T06],
[T07], [T08], [T09], [T10], [T11],
[T12], [T14], [T15], [T16], [T17],
[T18], [T20], [T21], [T22], [T23],
[T24], [T26]

Yes 4 (15%) [T04], [T13], [T19], [T25]

level. This means that there are no inconsistency tolerance
mechanisms in place that would allow deviations between
different notations describing the same model. However, a
small set of six tools support model-level flexibility.

123



I. David et al.

Flexibility—language.Themajority of tools, 22 of 26 (85%),
does not provide flexibility at the language-level. (Table 15)
This means that vertical inconsistencies between model and
language (e.g., broken conformance or typing relationships)
are not tolerated.We found three exceptions, which are, how-
ever, different from the ones with support for model-level
flexibility discussed above: mbeddr [T14], OSATE [T17],
TopBraid Composer [T22]. Only a single tool, Umple [T25],
supports both model- and language-level flexibility.
Flexibility—persistence. The majority of tools, 22 of 26
(85%), does not support persisting inconsistent models.
(Table 16) Out of the ones with support for persistence-
level flexibility, ETAS ASCET Developer [T04] and Umple
[T25] support model-flexibility and flexibility at both levels,
respectively. Theother two toolswith support for persistence-
level flexibility are MagicDraw [T13] and SequenceDia-
gramOrg [T19].

4.3 Realization-oriented characteristics (RQ2)

In this section, we discuss the findings related to the
implementation characteristics of the sampled tools. We
contextualize our findings in terms of the three aspects of
blended modeling tools: the support for multiple notations
(Sect. 4.3.1), seamless interaction (Sect. 4.3.2), and flexibil-
ity (Sect. 4.3.3).

4.3.1 Mapping and platforms

Mapping. The mapping between abstract syntax and nota-
tion is typically implemented either in a parser-based or in
a projectional fashion. In parser-based approaches, the user
modifies the models via different notations, and a parser pro-
duces the abstract syntax tree. In projectional approaches,
however, the abstract syntax tree is modified directly. Since
projectional editors bypass the stages of parser-based edi-
tors, they provide support for notations that cannot be easily
parsed, but at the same time deliver a different editing experi-
ence for textual notations. As shown in Table 17, themajority
of tools, 22 of 26 (85%), implement a parser-based editor,
while four come with projectional facilities.
Platforms. Eclipse is the only frequently encountered plat-
form in our sample. As shown in Table 18, 10 of 26 tools
(38%) are built on top of Eclipse, and 18 are built on other,
mainly custom platforms. mbdeddr [T14] is the only MPS-
based tool in our sample. One tool, MagicDraw [T13], also
supports more than one platform.

4.3.2 Change propagation and traceability

Change propagation and traceability are the realization-
oriented manifestations of the seamless integration blended
modeling aspect. (See Table 3.) During the data extraction

Table 17 Type of mapping

Mapping #Tools Tools

Parser-based 22 (85%) [T02], [T03], [T04], [T05], [T06],
[T07], [T08], [T09], [T10], [T11],
[T12], [T16], [T17] [T18], [T19],
[T20], [T21], [T22], [T23], [T24],
[T25], [T26]

Projectional 4 (15%) [T01], [T13], [T14], [T15]

Table 18 Platforms of implementation

Platform #Tools Tools

Other 17 (65%) [T01], [T03], [T05], [T07], [T08],
[T10], [T13], [T15], [T14], [T16],
[T18], [T19], [T20], [T21], [T24],
[T25], [T26]

Eclipse 10 (38%) [T02], [T04], [T06], [T09], [T11],
[T12], [T13], [T17], [T22], [T23]

Table 19 Support for inconsistency visualization

Inconsistency
visualization

#Tools Tools

No 15 (58%) [T01], [T03], [T05], [T06], [T08],
[T09], [T12], [T13], [T17], [T19],
[T20], [T21], [T23], [T24], [T26]

Internal 8 (31%) [T02], [T07], [T04], [T10], [T14],
[T16], [T18], [T25]

External 3 (11%) [T11], [T15], [T22]

phase, however, we have failed to obtain any useful infor-
mation in these two categories. In the vast majority of cases
(exception for ADOIT [T01], ARIS [T03], the Eclipse Pro-
cess Framework [T12], and MagicDraw [T13]), we have not
found explicit discussions of these concerns, nor any evi-
dence of these concerns being explicit in the tool.

We report these negative results to maintain the symmetry
of our classification framework. We suggest replications of
this study to be carried out in a conceptual way [21], i.e.,
attempting to answer the research questions using different
methods.

4.3.3 Inconsistency management

Inconsistency visualization.As shown in Table 19, themajor-
ity of tools, 15of 26 (58%), does not provide anyvisualization
for inconsistencies. Out of the remaining 11 tools, eight
implement an internal visualization mechanism, and three
rely on external services.
Inconsistency management type. The two fundamental
approaches to manage inconsistencies are prevention, and
allow-and-resolve [17]. Preventive techniques effectively

123



Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

Table 20 Support for different inconsistency management types

Inconsistency
mgmt type

#Tools Tools

Preventive 13 (50%) [T01], [T03], [T06], [T08], [T12],
[T13], [T15], [T16], [T21], [T23],
[T24], [T25], [T26]

On-the-fly 11 (42%) [T02], [T04], [T05], [T07], [T09],
[T10], [T14], [T18], [T19], [T20],
[T22]

On-demand 2 (8%) [T11], [T17]

prohibit the emergence of inconsistencies, either by serial-
izing user operations (e.g., via locking), or by constructing
the underlying data structures in a way that they can never
be inconsistent (e.g., in conflict-free replicated data types
(CRDT) [72]. Allow-and-resolve approaches embrace the
existence of inconsistencies [28] instead of preventing them.
This allows treating inconsistencieswith highly sophisticated
operations for tolerance [5,18], and resolution [34,54,60]. As
shown in Table 20, half of the tools, 13 of 26 (50%), prevent
inconsistencies. The remaining tools either manage incon-
sistencies on-the-fly (11 of 26 – 42%) or on-demand (2 of 26
– 8%).
Inconsistencymanagement automation.Asshown inTable 21,
13 of 26 tools (50%) do not provide inconsistency resolution
due to their preventive inconsistency management approach.
These tools are identical to the ones of the preventive cate-
gory in Table 20. Out of the remaining 13 tools, 11 provide
some level of automation for resolving inconsistencies, while
two tools rely on manual resolution.

5 Orthogonal findings

We have analyzed the extracted data for horizontal findings,
orthogonal to the vertical analysis reported in the previous
section. Specifically for this purpose, we have generated con-
tingency tables for each pair of categories of the classification
framework and looked for relevant emerging correlations.
In this section, we discuss these findings and contextualize
them in terms of the aspects of blendedmodeling: the support
for multiple notations (Sect. 5.1), seamless interaction (Sect.
5.2), and flexibility and inconsistency management (Sect.
5.3); and in the additional aspect of technological trends that
are independent from the blended aspects (Sect. 5.4).

5.1 Number of notation types and Overlap of
notations

As shown by the data in Sect. 4.2, the sampled tools support
2.5 types of notation on average. In about 81% of the cases,

Table 21 Level of automation of inconsistency management

Inconsistency
automation

#Tools Tools

Not applicable 13 (50%) [T01], [T03], [T06], [T08], [T12],
[T13], [T15], [T16], [T21], [T23],
[T24], [T25], [T26]

Fully automated 6 (23%) [T07], [T17], [T18], [T19], [T20],
[T22]

Semi-automated 5 (19%) [T02], [T09], [T10], [T14], [T11]

Manual 2 (8%) [T04], [T05]

the overlap between the specific notations is only partial, thus
providing a richer way to build models.
Notation types count versus Web-based nature The number
of types of notation tends to be higher in desktop tools. Tools
withmore than two types of notation are exclusively desktop-
based. While every web-based tool in our sample provides a
maximum of two types of notations, 11 of 17 desktop tools
(65%)provide three ormore types of notations.Wehavemea-
sured a statistically significant difference at p = 0.0064.40

Overlap of notations versus Web-based nature We found
significantly more completely overlapping notations in web-
based tools than in desktop-based tools. 4 of 9 web-based
tools (44%) come with completely overlapping notations.
This ratio is 5.9% in desktop-based tools (p = 0.0176). This
is in line with the previous observation of web-based tools
typically providing fewer types of notation. It is plausible
to assume that in desktop tools, the higher number of nota-
tion types might result in relevant differences between the
notations and, thus, less overlap among them.
Notation types count versus open-source nature The num-
ber of notation types tends to be higher in open-source tools
than in commercial ones. Three or more types of notations
are supported in 8 of 13 open-source tools (62%), while this
number is only 3 of 13 (23%) in commercial tools. However,
a deeper look also reveals that the only two tools supporting
four types of notations are commercial ones ([T07], [T22]).
While 2 of 13 commercial tools (15%) provide four types of
notations, 10 of 13 (77%) of them support only two. These
differences are significant at p = 0.0105. It is plausible to
assume that while commercial tool vendors have the capa-
bilities to develop sophisticated tools with many types of
notations, they still opt for a more streamlined user experi-
ence either due to explicit user requirements, or to minimize
the technological risks and improve the maintainability of
the tools.

40 For the remainder of the paper, α = 0.05, unless specifically noted
otherwise. Following the directions of Haviland [40], we report the p
values of the conventional Chi-square test without Yates’s correction
for continuity.

123



I. David et al.

5.2 Seamless interaction

In terms of seamless interaction, we have found significant
relationships between the navigation among notations, their
synchronicity, and the presence of inconsistency visualiza-
tion.
Navigation among notations versus Synchronous navigation
We have observed a statistically significant difference (p =
4E-4) between the complexity of navigationamongnotations,
and the synchronicity of navigation. The two features go hand
in hand. 16 of 16 tools (100%) with support for synchronous
navigation also support immediate navigation across differ-
ent notations. In contrast, only 4 of 10 tools (40%) without
synchronous navigation support immediate navigation. That
is, in over half of such tools, navigation between notations
becomes a complex and tedious task, significantly impacting
the user experience in terms of seamless interaction. Syn-
chronous navigation is more frequently observed in tools
with completely overlapping notations. While 5 of 5 tools
(100%) with completely overlapping notations operate with
synchronous navigation, this ratio is only 11 of 21 (52%) in
tools with partially overlapping notations.
Navigation among notations versus Inconsistency visualiza-
tion We observed that 11 of 11 tools (100%) that support
inconsistency visualization operate with immediate naviga-
tion; while tools without inconsistency visualization support
immediate navigation only in 9 of 15 cases (60%). The dif-
ference is significant at p = 0.0168.

5.3 Flexibility and inconsistencymanagement

As discussed in Sect. 4.2, flexibility, in general, is sporad-
ically supported by the tools we have sampled. We have
found that the three types of flexibility features (model-
level, language-level, persistence-level), often correlate with
inconsistency management aspects.
Model-level flexibility versus Inconsistency visualization
Inconsistency visualization is significantly better supported
in tools with model-level flexibility. We have found that 7
of 7 tools (100%) with model-level flexibility also support
inconsistency visualization, while this ratio drops to 4 of 19
(21%) in tools without model-level flexibility (p = 3E−4).
It is plausible to assume that inconsistency visualization is an
enabler tomodel-level flexibility.Visualizing inconsistencies
certainly helps the stakeholders to keep track of inconsisten-
cies and reason about themost appropriate time and approach
to resolving them.
Inconsistency visualization versus collaboration Tools with
internal inconsistency visualization features are also collab-
orative tools. This holds for 8 of 26 tools (31%). Conversely,
the 11 of 26 tools (42%) without collaborative features do
not support internal means of inconsistency visualization.
The ratio of collaborative and non-collaborative tools is

split almost evenly when inconsistency visualization is not
present. 15 of 26 tools (58%) come without inconsistency
visualization, out of which seven (27%) support collabo-
ration and eight (31%) lack collaborative features. These
relationships are significant at p = 0.0047. These obser-
vations can be explained by the strong relationship between
collaboration and inconsistencies: as the lack of collabora-
tion might severely reduce the cases when inconsistencies
can appear, tools vendors whose tools do not support col-
laboration might be less interested in developing internal
inconsistency visualization techniques.

5.4 Technological trends

We have further identified some purely technological trends,
orthogonal to the three facets of blended modeling, mainly
related to the web-based nature of tools (Table 5), their
collaborative features (Table 7), and their platforms of imple-
mentation (Table 18).
Collaboration on the web. The type of collaboration tends
to correlate with the type of client software. 5 of 6 tools
(83%) that operate with synchronous (real-time) collabora-
tion, are implemented as web-based tools. In contrast, 7 of
9 tools (78%) that operate with asynchronous (off-line) col-
laboration, are implemented as desktop tools. The type of
client software is nearly evenly split in collaborative tools
between web clients (7 of 15 – 47%) and desktop clients
(8 of 15 – 53%). However, 9 of 11 non-collaborative tools
(82%) are built as desktop applications, and we found only
twoweb-based non-collaborative tools. These differences are
significant at p = 0.0164. These observations are in linewith
the observations of our previous work [20], especially on the
apparent mobilization of collaborative modeling.
”Modeling” platforms are primarily desktop-based. We
observed that neither of the web-based tools in our sample
is implemented on a platform that explicitly aims to pro-
vide modeling capabilities. In contrast, 11 of 18 desktop
tools (61%) are implemented on top of a modeling platform,
such as Eclipse (10 of 18 – 56%), JetBrains MPS (1 of 18
– 6%), and other, custom platforms (7 of 18 – 39%). While
the web-based tools in our sample leverage web frameworks
that provide reusable elements to build front-end and back-
end functionality, the lack of modeling frameworks tailored
to the web are apparent. These differences are significant at
p = 0.0097.

6 Discussion

The corpus of this paper consists of 68 academic papers and
68 entries of grey literature survey, which eventually resulted
in 26 identified tools. Based on the rigorously constructed

123



Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

research protocol, we are reasonably confident in the repre-
sentativeness of our sample for the field under study.

6.1 Takeaways

The main takeaway of our investigation is that the state-of-
the-art and state-of-the-practice tools only provide partial
and accidental support for blended modeling. This is not a
surprising result, considering the novel and emerging nature
of the concept of blended modeling. We have found ade-
quately scaling tools in terms of the number of supported
notation types. 11 of 26 tools (42%) provide more than the
minimal two notation types (Table 8). Various aspects related
to flexibility, however, pose a potentially serious obstacle
for multi-notation tools to become true blended modeling
tools. Only 7 of 26 tools (27%) provide flexibility at the
instancemodel level, i.e., tolerance of horizontal inconsisten-
cies between models (Table 14). 4 of 26 tools (15%) support
flexibility at the language level, i.e., tolerance of vertical
inconsistencies, such as conformance or type discrepancies
(Table 15). In terms of user experience (UX), and espe-
cially seamless interaction, we noticed encouraging signs in
cross-notation navigability and inconsistency management
automation. 16 of 26 tools (62%) support a synchronized
navigation across their supported notations (Table 12) and,
in 20 of 26 tools (77%), immediate navigation is also avail-
able (Table 13). This enables a better concert of notations,
allowing using them in a truly complementary fashion. 11 of
13 tools (85%) that allow inconsistencies to occur treat them
with a substantial level of automation; only 2 of 13 (15%)
of such tools (a grand total of 8% – 2 of 26) rely on manual
resolution of inconsistencies (Table 21).

In terms of user-oriented characteristics (RQ1), we
observed a strong dominance of graphical notations, sup-
ported by 26 of 26 tools (100%), followed by textual
(19 of 26 – 73%), tabular (13 of 26 – 50%), and tree-based
ones (7 of 26 – 27%) (Table 9 and Fig. 5b). Only 5 of 26
tools (19%) feature a combination of notations that are com-
pletely overlapping in terms of modeling language concepts
(Table 11). Thismeans thatmulti-notation tools tend to lever-
age the complementary nature of different types of notation.
This is a welcome direction as it opens up for opportunities
of a richer modeling experience, paramount in approaches
such asMVM andMPM and, as such, it motivates the efforts
of blended modeling.

In terms of realization-oriented characteristics (RQ2), we
observed the dominance of parser-based solutions, employed
in 22 of 26 tools (85%) (Table 17). Evidence suggests that
projectional editors align better with multi-view and multi-
notation principles [8,84,86], which are now the typical
modeling settings for complex systems [62]. The average
age of tools in our sample is 10.6 years (σ = 5.9), dating
the typical modeling tool earlier than the uptick in research

interest in projectional editors.41 We foresee the support for
projectional editors to grow as modeling tools are becoming
more complex in their denotational and semantic functionali-
ties. We observed a relatively high support for automation of
inconsistency management (Table 21). Inconsistency man-
agement, and tolerance in particular (Tables 14, 15, 16), are
key enablers to the flexibility of modeling tools. Only 2 of
26 tools (8%) come without some level of automation in
resolving conflicts, and these are either research tools, such
as [T05], or tools that are explicitly not supporting group-
work, such as [T04].

6.2 Challenges and opportunities

Bymapping the state-of-the-art and state-of-the-practice, we
have identified challenges and opportunities related to the
concept of blended modeling in relation to tools.
Multi-formalism. Our study assumed one single underlying
abstract syntax and a single underlying formalism, but even
with this simplification, the support for multi-notation is
sporadic. Multi-formalism, and especially multi-semantics,
exacerbates this problem as we anticipate the interest in
blended modeling gradually shifting toward more complex
domains [13,58,83]. We see an opportunity for tool builders
and integrators in complex engineering domains that inher-
ently work in an MVM/MPM setup, such as mechatronics,
automotive, and robotics, to incorporate blendedness as an
enabling concept into their existing tool ecosystems. How-
ever, this should be preceded by academic research on
extending blended modeling, especially on topics such as
coordination betweenmodels of different languages [25], and
synchronization of abstract and concrete syntax inDSLs [65].
Nevertheless, we expect an early maturation and rapid take-
off of blended modeling techniques in an array of applied
modeling settings. Therefore, we advise technology trans-
fer entities to closely follow academic and semi-academic
advancements to propel the transition of the concept to
applied industrial settings.
Seamless interaction. As a primary user experience (UX)
concern, seamless interaction can make a substantial differ-
ence in user satisfaction [88] toward modeling tools. The
user-oriented aspects of our study (Sect. 4.2.2) show that
current tools are often equipped with related features (e.g.,
synchronous navigation among notations). Such tools have
the opportunity to provide holistic support for blended mod-
eling. The evaluation and comparison of realization-oriented
aspects, however, is certainly a challenge, as demonstrated

41 A directed search on Google Scholar using the (intitle:”
projectional editing” OR intitle:”projectional
editor” OR intitle:”projectional editors”) OR
(”projectional editing” OR ”projectional edi
tor” OR ”projectional editors”) search string suggests
an increasing publication output starting from 2013.

123



I. David et al.

in Sect. 4.3.2. The scope of our study did not include the
development of methods that would allow extracting infor-
mation about user experience and seamless integration of the
different modeling paradigms in blended modeling tools. In
general, the evaluation of such user-facing aspects remains
a challenge. We encourage researchers to develop methods
suitable for extracting the types of information outlined in
Sect. 4.3.2; and to further enrich the user-facing aspects,
based on Sect. 4.2.2.We suggest facilitating dedicated evalu-
ation events, e.g., hands-on workshops at major conferences,
where crowdsourcing models for hands-on experimentation
and evaluation are feasible because of the volume of the co-
located participants and their significant expertise, such as
the Hands-on Workshop on Collaborative Modeling (HoW-
CoM).42 and the workshop on Human Factors in Modeling
/ Modeling of Human Factors (HuFaMo)43 at MODELS,44

as well as the Conference on Human Factors in Comput-
ing Systems (CHI).45 Explicitly modeled user interfaces [76]
and API protocols [79] provide especially good foundations
for developing software tools that allow seamless switch-
ing between notations. Seamless interaction across textual
and graphical notations is especially challenging [25] due to
the differences between their respective grammar-based and
metamodel-based approaches [36]. Projectional editing [86]
provides appropriate means to overcome these limitations;
thus, we advise researchers to investigate seamless interac-
tion from this standpoint as well.
Flexibility. The flexibility of modeling tools in terms of
(temporarily) tolerating inconsistencies, such as violations
of well-formedness rules and inter-notation/inter-view dis-
crepancies, is best approached by employing state-of-the-art
inconsistency models, such as eventual and strong eventual
consistency [72]. Although the scope of this study does not
entail the particularities of inconsistency management, we
have identified traces and patterns of shortcomings in this
aspect. While the majority of tools operate in a preven-
tive inconsistency management fashion (Sect. 4.3.3), they
implement prevention in the traditional way, i.e., by pro-
hibiting consistency-breaking operations. Such approaches
stem from the limitations of strict consistency, whereas
novel developments in the field offer much better incon-
sistency management and, by extension, better flexibility.
Strong eventual consistency (SEC) [72], for example, offers
a convenient trade-off between the strictness of strong con-
sistency and the guarantees of eventual consistency. As such,
SEC is especially well-suited for tools whose developers
aremore comfortablewith preventive inconsistencymanage-
ment models. Such avenues have been explored in multiple

42 http://howcom2021.github.io/.
43 https://www.monash.edu/it/humanise-lab/hufamo21.
44 http://www.modelsconference.org/.
45 https://chi2021.acm.org/.

collaborative modeling frameworks, such as lowkey,46 and
C-Praxis [56].We see an opportunity in developing advanced
inconsistency tolerance methods that work at the semantic
level of models, especially if blended modeling is extended
to support multiple abstract syntaxes or multiple seman-
tics. Recently, inconsistency management between the data
and (meta)model level has been investigated, e.g., by Zaher
et al. [92]. Such directions align well with the persistence
flexibility aspect of modeling tools, which is sporadically
supported currently. In general, we encourage tool builders
to treat inconsistencies as first-class citizens and, instead
of overspending on resources to prevent them, we suggest
appropriately managing them [17,28].
The many facets of web-based tools. The interconnected
nature of web-based tools and the advanced communica-
tion and networking standards of the Internet align well
with building collaborative modeling tools. We observed a
tendency of tool builders to useweb technologiesmore in col-
laborative tools (Sect. 5.4). However, we also observed that
web-based tools come with significantly less types of nota-
tions (Sect. 5.1), and thatmodelingplatforms and frameworks
are built for desktop applications (Sect. 5.4). It is possible that
the shortage of modeling frameworks and language work-
benches with a web-based focus limits the ability of tool
vendors to provide rich modeling tools with numerous types
of notations and advancedmodeling facilities.Modeling plat-
forms such as Eclipse already started providing support for
deploying modeling tools onto the web, but this is merely
a workaround. We foresee an increasing industrial interest
in web-based modeling frameworks, such as WebGME [53],
providing researchers of language engineering and language
workbenches with opportunities.
Tools performance assessment. The current generation of
modeling tools is facing challenges to manage large-scale
complex models [10,49]. Given the presence of multiple
different notations in blended modeling, estimating tool per-
formancewhen dealingwith large-scale and complexmodels
is crucial for the future technical sustainability of blended
modeling. However, in our data analysis, we did not observe
that tool builders discuss the performance of their blended
modeling tools. We conjecture that this lack of commu-
nication is mainly because (i) tool performance is still an
open problem in MDE [10], and (ii) there are still no stan-
dard benchmarks for objectively and fairly comparing the
performance of different modeling tools. We suggest that
researchers investigate a shared and open benchmark for
assessing the performance of modeling tools when dealing
with models of different levels of size and complexity (i.e.,
from a few up to millions of modeling elements). To avoid
bias concerning specific DSMLs or application domains,
populating such benchmark should be a community effort,

46 https://github.com/geodes-sms/lowkey.

123

http://howcom2021.github.io/
https://www.monash.edu/it/humanise-lab/hufamo21
http://www.modelsconference.org/
https://chi2021.acm.org/
https://github.com/geodes-sms/lowkey


Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

where researchers and tool builders coming from different
domains collaborate and contribute their models, language
definitions, and requirements (e.g., expected time to open
a model with 1M elements, expected time to propagate a
model change from a visual syntax to the corresponding tex-
tual one, etc.). Having such shared benchmarks will provide
practitioners with an evidence-based instrument for com-
paring similar modeling tools and choosing the best one
according to their project and organizational needs. Also,
a shared benchmark will help MDE researchers in designing
and conducting empirical studies assessing the performance
of (blended) modeling tools, thus providing objective and
replicable knowledge for addressing the grand challenge of
scalability in Model-Driven Engineering [10].

7 Threats to validity

The study reported in this paper has been carried out based
on a carefully designed protocol. To minimize the threats
to validity, we have designed our protocol based on well-
established guidelines for systematic studies in software
engineering [47,90,93] and those for including grey litera-
ture by Garousi et al. [32].

We have assessed the quality of our study following the
guidelines by Petersen et al. [64] and achieved a 63.6% result.
This score is significantly higher than the median and abso-
lute maximum scores (33% and 48%, respectively) reported
in [64]. This high score can be mainly attributed to the
detailed search strategy; the involvement of external senior
consultants in the study design phase; and the involvement
of multiple authors in the screening phase, minimizing the
number of false inclusions and exclusions.

In the following, we discuss the possible threats to the
validity of our study and elaborate on howwe have mitigated
them.

7.1 External validity

External validity concerns the generalizability of the results
[90], and it is primarily associated with the samplingmethod.
The most severe threat to external validity is the lack of rep-
resentativeness of the selected tools to the field of interest
in general. We have mitigated this threat by an appropri-
ately constructed protocol with two orthogonal concerns.
First, our search strategy included manual and automated
search steps, with exhaustively iterative backward and for-
ward snowballing. Second, we have carried out this search
both for the academic and the grey literature [32].

Another class of threats to external validity can be
attributed to the inclusion and exclusion criteria used in the
screening. To mitigate these threats, we defined exclusion
criteria specific to the type of literature (white or grey) being

surveyed. Some threats remain, for example, due to the exclu-
sion of non-peer-reviewed academic material (A-E2 in Sect.
3), and the exclusion of proprietary tools that do not allow
experimentation with at least a trial version (GEN-E4). We
consider these threats minimal.

7.2 Internal validity

Internal validity is the extent towhich claims are supported by
data, and it is primarily associated with the study design. We
havemitigated this risk by the thorough construction and val-
idation of our protocol. The protocol has been developed by
multiple authors with relevant expertise on the topics related
to blendedmodeling. Additionally, the protocol has been val-
idated by an external reviewer with significant expertise in
empirical research. We have employed rigorous descriptive
statistical methods for orthogonal analysis and validation of
the data to further mitigate the threats.

7.3 Construct validity

Construct validity is concerned with the generalizability of
the measures of the study to the investigated concepts, and
it is primarily associated with the categories and parame-
ters employed during the data extraction and the subsequent
analysis. We have mitigated the threats by mapping the
research questions to typical parameters before constructing
our search strategy. Consequently, we are reasonably confi-
dent about the construction validity of the search strings used
in the automatic search steps. We have further minimized the
threats in the screening phase by refining the inclusion and
exclusion criteria in multiple iterations, to reach unambigu-
ous definitions. Each study was assigned to two researchers
randomly, and a third researcher was involved to oversee the
results and make the final decisions on the inclusion.

7.4 Conclusion validity

Conclusion validity is the degree of credibility of the con-
clusions, based on the relationship between cause and effect.
Specifically, in our case, conclusion validity is concerned
with the relationship between the conclusions communicated
in Sects. 4.2–6 and the extracted data. We mitigated the
main threats in two steps. First, considering that different
researchers might interpret the same data in different ways,
we have documented our research protocol in great detail and
made it available along with our datasets and statistical anal-
ysis scripts in the publicly available replication package.3

Second, we have constructed conclusions based only on the
available data.Anyhypotheses and conjunctureswere explic-
itly marked as such.

123



I. David et al.

8 Conclusions

In this paper, we have reported the results of our systematic,
multi-vocal study on the potential, opportunities, and chal-
lenges of the emerging approach of blended modeling. We
have reviewed nearly 5000 academic papers, and nearly 1500
entries of grey literature. Based on these, we have identified
133 candidate tools and eventually selected 26 state-of-the-
art and state-of-the-practice modeling tools which represent
the current spectrum of modeling tools. We defined a clas-
sification framework for these tools which we used to map
their support for other blended aspects, such as navigation
and inconsistency tolerance.

Our findings show that current tooling only provides
partial support for the features of blended modeling, in par-
ticular for inconsistencies between different notations of the
same model. The existing support for automated consistency
management is encouraging. We also observe that the over-
lap between notations is not complete. Projectional editing
seems to be a promising avenue for future blended model-
ing, but most existing tools we reviewed are not projectional.
Concerning the challenges,weobserve that support formulti-
formalism and multi-semantics is still largely lacking. We
also see opportunities for improvements when it comes to
the seamless integration of the different modeling notations
and the evaluation of the user experience. Finally, we identify
incorporating “softer”models of consistency that directly use
the semantics of the models to achieve eventual consistency
as a promising area of future research.

We foresee a new generation of modeling tools that will
take blended modeling further by introducing semantic tech-
niques that will allow basing the modeling workflow on
multiple different abstract syntaxes.

As for future work, we are working on implementing a
generator that produces blended modeling tools for arbitrary
domain-specific languages. These tools will be based on the
takeaways of this study aswell as on a prototype implementa-
tion that already embraces the blended principles by Addazi
et al. [1]. We intend to keep our dataset up-to-date and report
increments on the efforts made on improving blended mod-
eling. Finally, we plan to develop methods for the evaluation
of the user experience of blended modeling tools based on
hands-on events and workshops.

Acknowledgements The authors would like to thank Patricia Lago
and Matthias Tichy for reviewing the protocol, and their construc-
tive remarks. The authors would like to thank the reviewers for their
constructive remarks that helped improve the initial manuscript signifi-
cantly. Last but not least, the authorswould like to thank the tool vendors
and experts who helped us validate the data in this paper, including
Martin Auer, Dominik Bork, Lola Burgueño, Frank Hoffmann, Trevor
Jobling, Timothy Lethbridge, Victor Morgante, Staffan Persson, Irene
Polikoff, Alessandro Turco, Tamas Szabo, the dbdiagram.io team, the
ETAS team (sales.de@etas.com).

Referred tools

[T01] BOC Products & Services AG (2021) ADOIT:Comm
unityEdition. https://www.adoit-community.com/en/,
Retrieved: 22/05/2021.

[T02] Beauvoir, P and Sarrodie, JB (2021) Archi. https://
www.archimatetool.com/, Retrieved: 22/05/2021.

[T03] Software AG (2021) ARIS. https://www.ariscomm
unity.com/, Retrieved: 22/05/2021.

[T04] ETAS (2021) ASCET Developer. https://www.etas.
com/en/products/ascet-developer.php, Retrieved:
22/05/2021.

[T05] Université de Montréal (2021) AToMPM. https://
atompm.github.io/, Retrieved: 22/05/2021.

[T06] Mälardalen University (2021) Blended Profile. http://
www.es.mdh.se/ModComp/demo.html, Retrieved:
09/08/2021.

[T07] Viev (2021) Boston Professional. https://www.viev.
com/index.php/products-menu/boston-professional,
Retrieved: 22/05/2021.

[T08] ESTECOSpA (2021)Cardanit. https://www.cardanit.
com/, Retrieved: 22/05/2021.

[T09] NASA (2021) certware. https://nasa.github.io/Cert
Ware/, Retrieved: 22/05/2021.

[T10] Holistics Software (2021) DBDiagram. https://dbdia
gram.io/home, Retrieved: 22/05/2021.

[T11] The Eclipse Foundation (2021a) Eclipse Papyrus.
https://www.eclipse.org/papyrus/, Retrieved:
22/05/2021.

[T12] The Eclipse Foundation (2021b) Eclipse Process
Framework Project. https://projects.eclipse.org/
projects/technology.epf, Retrieved: 22/05/2021.

[T13] CATIA No Magic (2021) MagicDraw. https://www.
3ds.com/products-services/catia/products/no-magic/,
Retrieved: 22/05/2021.

[T14] itemis AG (2021) mbeddr. http://mbeddr.com/,
Retrieved: 22/05/2021.

[T15] OMiLAB (2021)MEMO4ADO. https://austria.omila
b.org/psm/content/memo4ado/info, Retrieved: 08/09/
2021.

[T16] Modelisoft (2021) Modelio. https://www.modelio.
org/, Retrieved: 22/05/2021.

[T17] Carnegie Mellon University (2021) OSATE. https://
osate.org/, Retrieved: 22/05/2021.

[T18] Dovetail Technologies Ltd (2021) QuickDataBaseDi-
agrams. https://www.quickdatabasediagrams.com/,
Retrieved: 22/05/2021.

[T19] - (2021a) SequenceDiagram.org. https://sequencedia
gram.org, Retrieved: 22/05/2021.

[T20] OMiLAB(2021)SOM/ADOxx. https://austria.omilab.
org/psm/content/som/info?view=home,
Retrieved: 22/05/2021.

123

https://www.adoit-community.com/en/
https://www.archimatetool.com/
https://www.archimatetool.com/
https://www.ariscommunity.com/
https://www.ariscommunity.com/
https://www.etas.com/en/products/ascet-developer.php
https://www.etas.com/en/products/ascet-developer.php
https://atompm.github.io/
https://atompm.github.io/
http://www.es.mdh.se/ModComp/demo.html
http://www.es.mdh.se/ModComp/demo.html
https://www.viev.com/index.php/products-menu/boston-professional
https://www.viev.com/index.php/products-menu/boston-professional
https://www.cardanit.com/
https://www.cardanit.com/
https://nasa.github.io/CertWare/
https://nasa.github.io/CertWare/
https://dbdiagram.io/home
https://dbdiagram.io/home
https://www.eclipse.org/papyrus/
https://projects.eclipse.org/projects/technology.epf
https://projects.eclipse.org/projects/technology.epf
https://www.3ds.com/products-services/catia/products/no-magic/
https://www.3ds.com/products-services/catia/products/no-magic/
http://mbeddr.com/
https://austria.omilab.org/psm/content/memo4ado/info
https://austria.omilab.org/psm/content/memo4ado/info
https://www.modelio.org/
https://www.modelio.org/
https://osate.org/
https://osate.org/
https://www.quickdatabasediagrams.com/
https://sequencediagram.org
https://sequencediagram.org
https://austria.omilab.org/psm/content/som/info?view=home
https://austria.omilab.org/psm/content/som/info?view=home


Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

[T21] - (2021b) Swimlanes.io. https://swimlanes.io/,
Retrieved: 22/05/2021.

[T22] TopQuadrant, Inc (2021) TopBraid Composer. https://
www.topquadrant.com/products/topbraid-composer/,
Retrieved: 22/05/2021.

[T23] TU Wien (2021a) UMLet. https://www.umlet.com/,
Retrieved: 22/05/2021.

[T24] TU Wien (2021b) UMLetino 14.3. https://www.
umletino.com/, Retrieved: 22/05/2021.

[T25] University of Ottawa (2021) Umple. https://cruise.
umple.org/umple/, Retrieved: 22/05/2021.

[T26] Universität Bremen (2021) USE – The UML-based
Specification Environment. http://useocl.sourceforge.
net/w/index.php/Main_Page, Retrieved: 22/05/2021.

References

1. Addazi, L., Ciccozzi, F.: Blended graphical and textual modelling
for UML profiles: a proof-of-concept implementation and experi-
ment. J. Syst. Softw. 175, 110912 (2021). https://doi.org/10.1016/
j.jss.2021.110912

2. Adve, S.V., Gharachorloo, K.: Shared memory consistency mod-
els: a tutorial. Computer 29(12), 66–76 (1996). https://doi.org/10.
1109/2.546611

3. Atkinson, C., Kühne, T.: Reducing accidental complexity in
domain models. Softw. Syst. Model 7(3), 345–359 (2008). https://
doi.org/10.1007/s10270-007-0061-0

4. Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguiça, N.M.,
Najafzadeh, M., Shapiro, M.: Putting consistency back into even-
tual consistency. In: Proceedings of theTenthEuropeanConference
on Computer Systems, EuroSys 2015, ACM, pp. 6:1–6:16, (2015).
https://doi.org/10.1145/2741948.2741972

5. Balzer, R.: Tolerating Inconsistency. In: Proceedings of the 13th
International Conference on Software Engineering, IEEE/ACM,
pp. 158–165 (1991)

6. Barisic, A., Amaral, V., Goulão, M.: Usability evaluation of
domain-specific languages. In: 8th International Conference on
the Quality of Information and Communications Technology,
QUATIC 2012, IEEE, pp. 342–347,(2012). https://doi.org/10.
1109/QUATIC.2012.63

7. Basili,V.R.,Caldiera,G.,Rombach,H.D.: The goal questionmetric
approach. In: Encyclopedia of Software Engineering, vol. 2,Wiley,
pp. 528–532 (1994)

8. Berger, T., Völter, M., Jensen, H.P., Dangprasert, T., Siegmund,
J.: Efficiency of projectional editing: a controlled experiment. In:
Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, ACM, pp.
763–774, (2016). https://doi.org/10.1145/2950290.2950315

9. Broy, M.: Software and system modeling: structured multi-view
modeling, specification, design and implementation. In: Conquer-
ing Complexity, Springer, pp. 309–372,(2012). https://doi.org/10.
1007/978-1-4471-2297-5_14

10. Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand
challenges in model-driven engineering: an analysis of the state
of the research. Softw. Syst. Model 19(1), 5–13 (2020). https://doi.
org/10.1007/s10270-019-00773-6

11. Carreira, P., Amaral, V., Vangheluwem, H.: Foundations of Multi-
ParadigmModelling for Cyber-Physical Systems. Springer, Berlin
(2020)

12. Charfi, A., Schmidt, A., Spriestersbach, A.: A hybrid graphi-
cal and textual notation and editor for UML actions. In: Model
DrivenArchitecture—Foundations andApplications, 5thEuropean
Conference, ECMDA-FA 2009, Springer, LNCS, vol. 5562, pp.
237–252,(2009). https://doi.org/10.1007/978-3-642-02674-4_17

13. Cicchetti, A., Ciccozzi, F., Pierantonio, A.: Multi-view approaches
for software and system modelling: a systematic literature review.
Softw. Syst. Model 18(6), 3207–3233 (2019). https://doi.org/10.
1007/s10270-018-00713-w

14. Ciccozzi, F., Malavolta, I., Selic, B.: Execution of UML mod-
els: a systematic review of research and practice. Softw. Syst.
Model 18(3), 2313–2360 (2019). https://doi.org/10.1007/s10270-
018-0675-4

15. Ciccozzi, F., Tichy,M., Vangheluwe, H.,Weyns, D.: Blendedmod-
elling: what, why and how. In: 22nd ACM/IEEE International
Conference on Model Driven Engineering Languages and Sys-
tems Companion,MODELSCompanion 2019, IEEE, pp. 425–430
(2019b). https://doi.org/10.1109/MODELS-C.2019.00068

16. Corley, J., Syriani, E., Ergin, H., Van Mierlo, S.: Modern software
engineeringmethodologies formobile and cloud environments, IGI
Global, chap Cloud-based Multi-View Modeling Environments,
pp. 120–139. 7 (2016)

17. David, I.: A Foundation for Inconsistency Management in Model-
Based Systems Engineering. PhD thesis, University of Antwerp,
Belgium, Middelheimlaan 1, 2020 Antwerpen, Belgium (2019)

18. David, I., Syriani, E., Verbrugge, C., Buchs, D., Blouin, D., Cic-
chetti, A., Vanherpen, K.: Towards inconsistency tolerance by
quantification of semantic inconsistencies. In: Proceedings of the
1st International Workshop on Collaborative Modelling in MDE
(COMMitMDE 2016) co-located with ACM/IEEE 19th Interna-
tional Conference on Model Driven Engineering Languages and
Systems (MoDELS 2016), CEUR-WS.org, CEURWorkshop Pro-
ceedings, vol. 1717, pp. 35–44 (2016)

19. David, I., Denil, J., Vangheluwe, H.: Process-oriented inconsis-
tency management in collaborative systems modeling. In: 16th
International Industrial Simulation Conference 2018, ISC 2018,
Eurosis, pp. 54–61 (2018)

20. David, I., Aslam, K., Faridmoayer, S., Malavolta, I., Syriani, E.,
Lago, P.: Collaborative model-driven software engineering: a sys-
tematic update. In: 24th International Conference onModel Driven
Engineering Languages and Systems, MODELS 2021, IEEE, pp.
273–284, (2021). https://doi.org/10.1109/MODELS50736.2021.
00035

21. Dennis, A.R., Valacich, J.S.: A replication manifesto. AIS Trans
Replication Res 1:1, (2015). https://doi.org/10.17705/1atrr.00001

22. Di Francesco, P., Lago, P., Malavolta, I.: Architecting with
microservices: a systematic mapping study. J. Syst. Softw. 150,
77–97 (2019). https://doi.org/10.1016/j.jss.2019.01.001

23. do Nascimento, L.M., Viana, D.L., Neto, P., Martins, D., Garcia,
V.C., Meira, S.: A systematic mapping study on domain-specific
languages. In: The Seventh International Conference on Software
Engineering Advances (ICSEA 2012), pp. 179–187 (2012)

24. Easterbrook, S., Finkelstein, A., Kramer, J., Nuseibeh, B.: Coor-
dinating Distributed ViewPoints: the anatomy of a consistency
check. Concurr. Eng. 2(3), 209–222 (1994). https://doi.org/10.
1177/1063293X9400200307

25. Engelen, L., van den Brand, M.: Integrating textual and graphical
modelling languages. Electron. Notes Theor. Comput. Sci. 253(7),
105–120 (2010). https://doi.org/10.1016/j.entcs.2010.08.035

26. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: A method-
ology for specifying and analyzing consistency of object-oriented
behavioral models. In: Proceedings of the 8th European Software
Engineering Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
2001, ACM, pp. 186–195,(2001). https://doi.org/10.1145/503209.
503235

123

https://swimlanes.io/
https://www.topquadrant.com/products/topbraid-composer/
https://www.topquadrant.com/products/topbraid-composer/
https://www.umlet.com/
https://www.umletino.com/
https://www.umletino.com/
https://cruise.umple.org/umple/
https://cruise.umple.org/umple/
http://useocl.sourceforge.net/w/index.php/Main_Page
http://useocl.sourceforge.net/w/index.php/Main_Page
https://doi.org/10.1016/j.jss.2021.110912
https://doi.org/10.1016/j.jss.2021.110912
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1007/978-1-4471-2297-5_14
https://doi.org/10.1007/978-1-4471-2297-5_14
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/978-3-642-02674-4_17
https://doi.org/10.1007/s10270-018-00713-w
https://doi.org/10.1007/s10270-018-00713-w
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1109/MODELS50736.2021.00035
https://doi.org/10.1109/MODELS50736.2021.00035
https://doi.org/10.17705/1atrr.00001
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1177/1063293X9400200307
https://doi.org/10.1177/1063293X9400200307
https://doi.org/10.1016/j.entcs.2010.08.035
https://doi.org/10.1145/503209.503235
https://doi.org/10.1145/503209.503235


I. David et al.

27. Erdweg, S., et al.: Evaluating and comparing language work-
benches: existing results and benchmarks for the future. Comput.
Lang Syst. Struct. 44, 24–47 (2015). https://doi.org/10.1016/j.cl.
2015.08.007

28. Finkelstein, A.: A foolish consistency: technical challenges in
consistency management. In: Database and Expert Systems Appli-
cations, 11th International Conference, DEXA 2000, Springer,
LNCS, vol 1873, pp. 1–5 (2000). https://doi.org/10.1007/3-540-
44469-6_1

29. Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh,
B.: Inconsistency handling in multperspective specifications. IEEE
Trans. Softw. Eng. 20(8), 569–578 (1994). https://doi.org/10.1109/
32.310667

30. Franzago, M., Ruscio, D.D., Malavolta, I., Muccini, H.: Col-
laborative Model-Driven Software Engineering: A Classification
Framework and a ResearchMap. IEEETrans Software Eng 44(12),
1146–1175 (2018). https://doi.org/10.1109/TSE.2017.2755039

31. Franzosi, R.: Quantitative narrative analysis. 162, Sage (2010)
32. Garousi, V., Fernandes, J.M.: Highly-cited papers in software engi-

neering: the top-100. Inf. Softw. Technol. 71, 108–128 (2016).
https://doi.org/10.1016/j.infsof.2015.11.003

33. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for includ-
ing grey literature and conducting multivocal literature reviews in
software engineering. Inf. Softw. Technol. 106, 101–121 (2019).
https://doi.org/10.1016/j.infsof.2018.09.006

34. Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S.,
Rieke, J.: Management of cross-domain model consistency during
the development of advanced mechatronic systems. In: DS 58-6:
Proceedings of ICED 09, the 17th International Conference on
Engineering Design, ICED, vol. 6, pp. 1–12 (2009)

35. Giese, H., Wagner, R.: Incremental model synchronization with
triple graph grammars. In: Model Driven Engineering Lan-
guages and Systems, 9th International Conference,MoDELS2006,
Springer, LNCS, vol. 4199, pp. 543–557 (2006). https://doi.org/10.
1007/11880240_38

36. Gjøsæter, T., Prinz, A., Scheidgen, M.: Meta-model or Gram-
mar? Methods and Tools for the Formal Definition of Languages.
In: Nordic Workshop on Model Driven Engineering (NW-MoDE
2008), pp. 67–82 (2008)

37. Granada, D., Vara, J.M., Blanco, F.J.P., Marcos, E.: Model-based
Tool Support for theDevelopment ofVisual Editors—ASystematic
Mapping Study. In: Proceedings of the 12th International Confer-
ence on Software Technologies, ICSOFT 2017, SciTePress, pp.
330–337, (2017). https://doi.org/10.5220/0006430503300337

38. Greenhalgh, T., Peacock, R.: Effectiveness and efficiency of search
methods in systematic reviews of complex evidence: audit of pri-
mary sources. BMJ 331(7524), 1064–1065 (2005)

39. Gu, Z., Wang, S., Kodase, S., Shin, K.G.: An end-to-end tool chain
for multi-view modeling and analysis of avionics mission comput-
ing software. In: Proceedings of the 24th IEEE Real-Time Systems
Symposium (RTSS 2003), 3-5 December 2003, Cancun, Mexico,
IEEEComputer Society, pp. 78–81 (2003) https://doi.org/10.1109/
REAL.2003.1253256

40. Haviland, M.G.: Yates’s correction for continuity and the analy-
sis of 2× 2 contingency tables. Stat. Med. 9(4), 363–367 (1990).
https://doi.org/10.1002/sim.4780090403

41. Huning, L., Osterkamp, T., Schaarschmidt, M., Pulvermüller, E.:
Seamless integration of hardware interfaces in UML-based MDSE
tools. In: Proceedings of the 16th International Conference on Soft-
ware Technologies, ICSOFT 2021, Online Streaming, July 6–8,
2021, SCITEPRESS, pp 233–244, (2021). https://doi.org/10.5220/
0010575802330244

42. ISO/IEC/IEEE (2011) Systems and software engineering—
architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision
of ISO/IEC 42010:2007 and IEEE Std 1471-2000) pp. 1–46

43. Iung, A., Carbonell, J., Marchezan, L., Rodrigues, E.M.,
Bernardino, M., Basso, F.P., Medeiros, B.: Systematic mapping
study on domain-specific language development tools. Empir.
Softw. Eng. 25(5), 4205–4249 (2020). https://doi.org/10.1007/
s10664-020-09872-1

44. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit
scripts in model versioning. In: 2013 28th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE
2013, IEEE, pp. 191–201,(2013). https://doi.org/10.1109/ASE.
2013.6693079

45. Kelly, S .: Collaborative modelling with version control. In: Soft-
ware Technologies: Applications and Foundations - STAF 2017
Collocated Workshops, Springer, LNCS, vol. 10748, pp. 20–29,
(2017).https://doi.org/10.1007/978-3-319-74730-9_3

46. Kitchenham, B.A., Brereton, P.: A systematic review of systematic
review process research in software engineering. Inf. Softw. Tech-
nol. 55(12), 2049–2075 (2013). https://doi.org/10.1016/j.infsof.
2013.07.010

47. Kitchenham, B.A., Charters, S.: Guidelines for performing system-
atic literature reviews in software engineering, Version 2.3. EBSE
Technical Report EBSE-2007-01, Keele University and University
of Durham (2007)

48. Klare, H., Kramer, M.E., Langhammer, M., Werle, D., Burger,
E., Reussner, R.H.: Enabling consistency in view-based system
development: the vitruvius approach. J. Syst. Softw. 171(110), 815
(2021). https://doi.org/10.1016/j.jss.2020.110815

49. Kolovos, D.S., Rose, L.M., Matragkas, N.D., Paige, R.F., Guerra,
E., Cuadrado, J.S., de Lara, J., Ráth, I., Varró,D., Tisi,M., Cabot, J.:
A research roadmap towards achieving scalability in model driven
engineering. In: Proceedings of the Workshop on Scalability in
Model Driven Engineering, ACM, p. 2 (2013). https://doi.org/10.
1145/2487766.2487768

50. Lamport, L.:How tomake amultiprocessor computer that correctly
executesmultiprocess programs. IEEETrans. Comput. 28(9), 690–
691 (1979). https://doi.org/10.1109/TC.1979.1675439

51. Lazăr, C.L.: Integrating Alf editor with Eclipse UML editors. Stu-
dia Universitatis Babes-Bolyai, Informatica 56(3): (2011)

52. Maro, S., Steghöfer, J., Anjorin, A., Tichy, M., Gelin, L.: On
integrating graphical and textual editors for a UML profile based
domain specific language: an industrial experience. In: Proceedings
of the 2015 ACMSIGPLAN International Conference on Software
Language Engineering, SLE 2015, ACM, pp. 1–12 (2015)

53. Maróti M, Kecskés T, Kereskényi R, Broll B, Völgyesi P, Jurácz
L, Levendovszky T, Lédeczi Á (2014) Next generation (meta)
modeling: web-and cloud-based collaborative tool infrastructure.
MPM@ MoDELS 1237:41–60

54. Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and Resolving
Model Inconsistencies Using Transformation Dependency Anal-
ysis. In: Model Driven Engineering Languages and Systems, 9th
International Conference, MoDELS 2006, Genova, Italy, October
1-6, 2006, Proceedings, Springer, LNCS, vol. 4199, pp. 200–214,
(2006). https://doi.org/10.1007/11880240_15

55. Merkle, B.: Textual modeling tools: overview and comparison
of language workbenches. In: Companion to the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, SPLASH/OOPSLA 2010,
ACM, pp. 139–148, (2010). https://doi.org/10.1145/1869542.
1869564

56. Michaux, J., Blanc, X., Shapiro, M., Sutra, P.: A semantically rich
approach for collaborative model edition. In: Proceedings of the
2011 ACM Symposium on Applied Computing (SAC), ACM, pp.
1470–1475 (2011). https://doi.org/10.1145/1982185.1982500

57. Moody, D.L.: The physics of notations: toward a scientific basis for
constructing visual notations in software engineering. IEEE Trans.
Softw. Eng. 35(6), 756–779 (2009). https://doi.org/10.1109/TSE.
2009.67

123

https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1007/3-540-44469-6_1
https://doi.org/10.1007/3-540-44469-6_1
https://doi.org/10.1109/32.310667
https://doi.org/10.1109/32.310667
https://doi.org/10.1109/TSE.2017.2755039
https://doi.org/10.1016/j.infsof.2015.11.003
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1007/11880240_38
https://doi.org/10.1007/11880240_38
https://doi.org/10.5220/0006430503300337
https://doi.org/10.1109/REAL.2003.1253256
https://doi.org/10.1109/REAL.2003.1253256
https://doi.org/10.1002/sim.4780090403
https://doi.org/10.5220/0010575802330244
https://doi.org/10.5220/0010575802330244
https://doi.org/10.1007/s10664-020-09872-1
https://doi.org/10.1007/s10664-020-09872-1
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1007/978-3-319-74730-9_3
https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1145/2487766.2487768
https://doi.org/10.1145/2487766.2487768
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/11880240_15
https://doi.org/10.1145/1869542.1869564
https://doi.org/10.1145/1869542.1869564
https://doi.org/10.1145/1982185.1982500
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67


Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

58. Mosterman, P.J., Vangheluwe, H.: Computer automated multi-
paradigmmodeling: an introduction. Simul 80(9), 433–450 (2004).
https://doi.org/10.1177/0037549704050532

59. Negm, E., Makady, S., Salah, A.: Survey on domain specific lan-
guages implementation aspects. International Journal of Advanced
Computer Science and Applications 10 (2019)

60. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency man-
agement with repair actions. In: Proceedings of the 25th Inter-
national Conference on Software Engineering, IEEE, pp. 455–
464,(2003). https://doi.org/10.1109/ICSE.2003.1201223

61. Nuseibeh, B., Easterbrook, S.M., Russo, A.: Making inconsistency
respectable in software development. J. Syst. Softw. 58(2), 171–
180 (2001). https://doi.org/10.1016/S0164-1212(01)00036-X

62. Persson, M., Törngren, M., Qamar, A., Westman, J., Biehl, M.,
Tripakis, S., Vangheluwe, H., Denil, J.: A characterization of inte-
grated multi-view modeling in the context of embedded and cyber-
physical systems. In: Proceedings of the International Conference
on Embedded Software, EMSOFT 2013, IEEE, pp. 10:1–10:10
(2013). https://doi.org/10.1109/EMSOFT.2013.6658588

63. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic
mapping studies in software engineering. In: 12th International
Conference on Evaluation and Assessment in Software Engineer-
ing, EASE 2008, BCS, Workshops in Computing (2018)

64. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for con-
ducting systematic mapping studies in software engineering: an
update. Inf. Softw. Technol. 64, 1–18 (2015). https://doi.org/10.
1016/j.infsof.2015.03.007

65. Ráth, I., Ökrös, A., Varró, D.: Synchronization of abstract and con-
crete syntax in domain-specific modeling languages - By mapping
models and live transformations. Softw. Syst.Model 9(4), 453–471
(2010). https://doi.org/10.1007/s10270-009-0122-7

66. Reineke, J., Stergiou, C., Tripakis, S.: Basic problems inmulti-view
modeling. Softw. Syst. Model 18(3), 1577–1611 (2019). https://
doi.org/10.1007/s10270-017-0638-1

67. Ries, B., Capozucca, A., Guelfi, N.: Messir: a text-first DSL-based
approach for UML requirements engineering (tool demo). In: Pro-
ceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2018, ACM, pp. 103–107,
(2018). https://doi.org/10.1145/3276604.3276614

68. Rodgers, M., Sowden, A., Petticrew, M., Arai, L., Roberts, H.,
Britten, N., Popay, J.: Testing methodological guidance on the
conduct of narrative synthesis in systematic reviews: effective-
ness of interventions to promote smoke alarm ownership and
function. Evaluation 15(1), 49–73 (2009). https://doi.org/10.1177/
1356389008097871

69. Rothstein, H.R., Hopewell, S.: Grey literature. Handb. Res.
Synth. Meta-anal. 2, 103–125 (2009). https://doi.org/10.1002/
0470870168.ch4

70. Scheidgen, M.: Textual modelling embedded into graphical mod-
elling. In: Model Driven Architecture - Foundations and Appli-
cations, 4th European Conference, ECMDA-FA 2008, Springer,
LNCS, vol 5095, pp. 153–168, https://doi.org/10.1007/978-3-540-
69100-6_11 (2008)

71. Schulze, M., Weiland, J., Beuche, D.: Automotive model-driven
development and the challenge of variability. In: 16th International
Software Product Line Conference, SPLC ’12, Salvador, Brazil -
September 2-7, 2012,Volume1,ACM, pp. 207–214 (2012). https://
doi.org/10.1145/2362536.2362565

72. Shapiro, M., Preguiça, N.M., Baquero, C., Zawirski, M.: Conflict-
Free Replicated Data Types. In: Stabilization, Safety, and Security
of Distributed Systems - 13th International Symposium, SSS 2011,
Springer, Lecture Notes in Computer Science, vol. 6976, pp. 386–
400 (2011). https://doi.org/10.1007/978-3-642-24550-3_29

73. Simonyi, C.: The Death of Computer Languages, The Birth of
Intentional Programming. Tech. Rep. MSR-TR-95-52 (1995)

74. Spanoudakis, G., Zisman, A.: Inconsistency management in soft-
ware engineering: Survey and open research issues. In: Handbook
of Software Engineering and Knowledge Engineering: Volume I:
Fundamentals, World Scientific, pp. 329–380 (2001)

75. Stevens, P.: Maintaining consistency in networks of models: bidi-
rectional transformations in the large. Softw. Syst. Model 19(1),
39–65 (2020). https://doi.org/10.1007/s10270-019-00736-x

76. Syriani, E., Riegelhaupt, D., Barroca, B., David, I.: Generation of
custom textual model editors. Modelling 2(4), 609–625 (2021)

77. Torres, W., van den Brand, M.G.J., Serebrenik, A.: A system-
atic literature review of cross-domain model consistency checking
by model management tools. Softw. Syst. Model 20(3), 897–916
(2021). https://doi.org/10.1007/s10270-020-00834-1

78. Van Mierlo, S., Van Tendeloo, Y., Meyers, B., Exelmans, J.,
Vangheluwe, H.: SCCD: SCXML extended with class diagrams.
Proc. Workshop Eng. Interact. Syst. SCXML 2, 1–2 (2016)

79. Van Mierlo, S., Van Tendeloo, Y., David, I., Meyers, B.,
Gebremichael, A., Vangheluwe, H.: A multi-paradigm approach
for modelling service interactions in model-driven engineering
processes. In: Proceedings of the Model-driven Approaches for
SimulationEngineering Symposium, SpringSim (Mod4Sim) 2018,
ACM, pp. 6:1–6:12 (2018)

80. van Rest, O., Wachsmuth, G., Steel, J.R.H., Süß, J.G., Visser, E.:
Robust Real-Time Synchronization between Textual andGraphical
Editors. In: Theory and Practice of Model Transformations - 6th
International Conference, ICMT@STAF 2013, Springer, LNCS,
vol 7909, pp. 92–107 (2012). https://doi.org/10.1007/978-3-642-
38883-5_11

81. Vangheluwe, H., de Lara, J., Mosterman, P.J.: An introduction to
multi-paradigm modelling and simulation. In: Proceedings of the
AIS’2002 conference (AI, Simulation and Planning inHighAuton-
omy Systems), pp. 9–20 (2002)

82. Vanherpen, K.: A Contract-based approach for multi-viewpoint
consistency in the concurrent design of cyber-physical systems.
PhD thesis, University of Antwerp, Belgium, Middelheimlaan 1,
2020 Antwerpen, Belgium (2018)

83. Vanherpen, K., Denil, J., David, I., Meulenaere, P.D., Mosterman,
P.J., Törngren, M., Qamar, A., Vangheluwe, H.: Ontological rea-
soning for consistency in the design of cyber-physical systems.
In: 1st International Workshop on Cyber-Physical Production Sys-
tems, CPPS@CPSWeek 2016, IEEE, pp. 1–8 (2016). https://doi.
org/10.1109/CPPS.2016.7483922

84. Voelter, M.: Language and IDE modularization and composition
withMPS. In:Generative andTransformationalTechniques inSoft-
ware Engineering IV, International Summer School, GTTSE 2011,
Springer, LNCS, vol. 7680, pp. 383–430, (2011). https://doi.org/
10.1007/978-3-642-35992-7_11

85. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44
(2009). https://doi.org/10.1145/1435417.1435432

86. Völter, M., Siegmund, J., Berger, T., Kolb, B.: Towards
user-friendly projectional editors. In: Software Language
Engineering—7th International Conference, SLE 2014, Springer,
LNCS, vol. 8706, pp. 41–61 (2014). https://doi.org/10.1007/978-
3-319-11245-9_3

87. von Hanxleden, R., Lee, E.A., Motika, C., Fuhrmann, H.: Multi-
viewmodeling and pragmatics in 2020—position paper on design-
ing complex cyber-physical systems. In: Large-Scale Complex IT
Systems. Development, Operation and Management - 17th Mon-
terey Workshop 2012, Springer, LNCS, vol. 7539, pp. 209–223.
https://doi.org/10.1007/978-3-642-34059-8_11

88. Wixom, B.H., Todd, P.A.: A theoretical integration of user satis-
faction and technology acceptance. Inf. Syst. Res. 16(1), 85–102
(2005). https://doi.org/10.1287/isre.1050.0042

89. Wohlin, C.: Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: 18th inter-
national conference on evaluation and assessment in software

123

https://doi.org/10.1177/0037549704050532
https://doi.org/10.1109/ICSE.2003.1201223
https://doi.org/10.1016/S0164-1212(01)00036-X
https://doi.org/10.1109/EMSOFT.2013.6658588
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/s10270-009-0122-7
https://doi.org/10.1007/s10270-017-0638-1
https://doi.org/10.1007/s10270-017-0638-1
https://doi.org/10.1145/3276604.3276614
https://doi.org/10.1177/1356389008097871
https://doi.org/10.1177/1356389008097871
https://doi.org/10.1002/0470870168.ch4
https://doi.org/10.1002/0470870168.ch4
https://doi.org/10.1007/978-3-540-69100-6_11
https://doi.org/10.1007/978-3-540-69100-6_11
https://doi.org/10.1145/2362536.2362565
https://doi.org/10.1145/2362536.2362565
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.1007/s10270-020-00834-1
https://doi.org/10.1007/978-3-642-38883-5_11
https://doi.org/10.1007/978-3-642-38883-5_11
https://doi.org/10.1109/CPPS.2016.7483922
https://doi.org/10.1109/CPPS.2016.7483922
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/978-3-642-34059-8_11
https://doi.org/10.1287/isre.1050.0042


I. David et al.

engineering, EASE ’14, ACM, pp. 38:1–38:10, (2014). https://doi.
org/10.1145/2601248.2601268

90. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.:
Experimentation in Software Engineering. Springer (2012). https://
doi.org/10.1007/978-3-642-29044-2

91. Yang, G., Zhou, X., Lian, Y.: Constraint-based consistency check-
ing for multi-view models of cyber-physical system. In: 2017
IEEE International Conference on Software Quality, Reliability
and Security Companion, QRS-C 2017, IEEE, pp 370–376, (2017).
https://doi.org/10.1109/QRS-C.2017.68

92. Zaheri, M., Famelis, M., Syriani, E.: Towards checking
consistency-breaking updates between models and generated arti-
facts. In: ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, MODELS 2021
Companion, IEEE, pp. 400–409, (2021). https://doi.org/10.1109/
MODELS-C53483.2021.00063

93. Zhang, H., Babar, M.A., Tell, P.: Identifying relevant studies in
software engineering. Inf. Softw. Technol. 53(6), 625–637 (2011).
https://doi.org/10.1016/j.infsof.2010.12.010

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Istvan David is a postdoctoral
researcher at the University of
Montréal, Canada. He received his
Ph.D. in Computer Science from
the University of Antwerp, Bel-
gium. His research focuses on col-
laborative modeling, inconsistency
management in model-driven set-
tings, multi-paradigm modeling
and model transformations. Ist-
van is an IVADO Postdoctoral
Research Scholarship laureate on
the topic of inference of simula-
tion models in digital twins by
reinforcement learning. He is also

active outside of academia, mainly in innovation consulting.

Malvina Latifaj is a Ph.D. can-
didate at Mälardalen University
(Västerås, Sweden), part of the
Automated Software language and
Software engineering (ASSO)
research group. Her research inter-
ests include model-driven engi-
neering with a special emphasis
on blended modelling. More
specifically, she focuses on the
definition of domain-specific mod-
elling languages, mapping mod-
elling languages, and the provi-
sion of synchronization mecha-
nisms through model transforma-

tions.

Jakob Pietron is a Ph.D. candidate
at the Institute of Software Engi-
neering and Programming Lan-
guages, Ulm University, Germany.
His research focuses on collabora-
tive model-driven software engi-
neering. In particular, his research
aims to support comprehensibil-
ity and explainability of evolving
models and their evolution his-
tory created by multiple modellers
collaboratively. This includes not
only technical but also UX chal-
lenges which arise during the use
of collaborative modelling tools.

Weixing Zhang is a Ph.D. stu-
dent at the Interaction Design and
Software Engineering Division at
Chalmers University of Technol-
ogy and the University of Gothen-
burg. His research area is model-
driven software engineering and
specifically focuses on enhancing
the working environments for
domain-specific languages.

Federico Ciccozzi is an Associate
Professor at Malardalen Univer-
sity (Sweden). His research spe-
cializes in: definition of DSMLs,
model transformations, system
properties preservation, multipara
digm modelling, model version-
ing, combination of MDE and
CBSE for complex systems,
blended modelling, language and
compiler engineering. Federico has
organized over 40 conference tracks,
sessions, workshops and journal
special issues. He has been a pro-
gram committee member of over

40 scientific events in the last year. He is associate editor for IET
Software, and 6 times guest editor of SoSyM and JISA. He has (co-
)authored over 100 peer-reviewed publications. More info at: http://
www.es.mdh.se/staff/266-Federico_Ciccozzi.

123

https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/QRS-C.2017.68
https://doi.org/10.1109/MODELS-C53483.2021.00063
https://doi.org/10.1109/MODELS-C53483.2021.00063
https://doi.org/10.1016/j.infsof.2010.12.010
http://www.es.mdh.se/staff/266-Federico_Ciccozzi
http://www.es.mdh.se/staff/266-Federico_Ciccozzi


Blended modeling in commercial and open-source model-driven software engineering tools: A systematic...

Ivano Malavolta is Assistant pro-
fessor at the Computer Science
Department and Director of the
Network Institute at the Vrije Uni-
versiteit Amsterdam (The Nether-
lands). His research focuses on
data-driven software engineering,
with a special emphasis on soft-
ware architecture, mobile software
development, robotics software.
He applies empirical methods to
evaluate methods and techniques
in the field of software engineer-
ing. He authored several scientific
articles in international journals

and peer-reviewed international conferences proceedings. He is a pro-
gram committee member and reviewer of international conferences
and journals in the software engineering field. He received a Ph.D. in
computer science from the University of L’Aquila in 2012. He is a
member of ACM, IEEE, VERSEN, Amsterdam Young Academy, and
Amsterdam Data Science.

Alexander Raschke is a Research
Associate at the Institute of Soft-
ware Engineering and Program-
ming Languages, Ulm University,
Germany. He aims to improve the
developers’ experience through bet-
ter modeling tools, but also through
appropriate expressive domain-
specific languages. Besides empir-
ically evaluating the pitfalls of
these tools, he also develops and
evaluates new interaction and col-
laboration techniques. In addition
to graphical formalisms, Alexan-
der is also interested in textual

formal specification languages, especially abstract state machines
(ASMs).

Jan-Philipp Steghöfer is an Asso-
ciate Professor at the Interaction
Design and Software Engineering
Division at Chalmers University
of Technology and the University
of Gothenburg. His research inter-
ests span a broad range of topics
in software and systems design,
including agile development pro-
cesses for safety-critical systems,
software and systems traceabil-
ity, information and knowledge
management in large organisations,
and model-driven engineering of
complex, heterogeneous systems.

Regina Hebig is an Associate Pro-
fessor at the Interaction Design
and Software Engineering Divi-
sion at Chalmers University of
Technology and the University of
Gothenburg. Her research inter-
ests include software evolution,
software modelling, and software
processes. She is a rotating mem-
ber of the Steering Committee of
the International Conference on
Software System Process (ICSSP).
Furthermore, she is the director of
the master education in software
engineering at Chalmers and the

University of Gothenburg.

123


	Blended modeling in commercial and open-source model-driven software engineering tools: A systematic study
	Abstract
	1 Introduction
	1.1 What is blended modeling?
	1.2 What is not blended modeling?
	1.3 Motivation and aim
	1.4 Structure

	2 Background
	2.1 Multiple notations
	2.1.1 Multi-view modeling
	2.1.2 Multi-paradigm modeling

	2.2 Seamless interaction
	2.2.1 Text-based modeling with graphical visualizations
	2.2.2 Mixed textual and graphical modeling
	2.2.3 Projectional editing

	2.3 Inconsistency management
	2.4 Related secondary literature

	3 Study design
	3.1 Process
	3.1.1 Planning
	3.1.2 Conducting
	3.1.3 Documenting

	3.2 Research questions
	3.3 Search and selection
	3.3.1 Systematic reviews
	3.3.2 Tool identification

	3.4 Classification framework definition
	3.5 Data extraction
	3.6 Data validation
	3.7 Data analysis
	3.7.1 Vertical analysis
	3.7.2 Horizontal analysis


	4 Results
	4.1 Overview
	4.2 User-oriented characteristics (RQ1)
	4.2.1 Notations
	4.2.2 Visualization and navigation
	4.2.3 Flexibility

	4.3 Realization-oriented characteristics (RQ2)
	4.3.1 Mapping and platforms
	4.3.2 Change propagation and traceability
	4.3.3 Inconsistency management


	5 Orthogonal findings
	5.1 Number of notation types and Overlap of notations
	5.2 Seamless interaction
	5.3 Flexibility and inconsistency management
	5.4 Technological trends

	6 Discussion
	6.1 Takeaways
	6.2 Challenges and opportunities

	7 Threats to validity
	7.1 External validity
	7.2 Internal validity
	7.3 Construct validity
	7.4 Conclusion validity

	8 Conclusions
	Acknowledgements
	Referred tools
	References




