Assessing the Impact of Service Workers on the
Energy Efficiency of Progressive Web Apps

Ivano Malavolta, Giuseppe Procaccianti, Paul Noorland, Petar Vukmirovié
Computer Science Department, Vrije Universiteit Amsterdam, The Netherlands
{i.malavolta | g.procaccianti | p.vukmirovic}@vu.nl, p.d.noorland@student.vu.nl

Abstract—Context. Mobile web apps represent a large share of
the Internet today. However, they still lag behind native apps in
terms of user experience. Progressive Web Apps (PWAs) are a
new technology introduced by Google that aims at bridging this
gap, with a set of APIs known as service workers at its core.
Goal. In this paper, we present an empirical study that evaluates
the impact of service workers on the energy efficiency of PWAs,
when operating in different network conditions on two different
generations of mobile devices.

Method. We designed an empirical experiment with two main
factors: the use of service workers and the type of network
available (2G or WiFi). We performed the experiment by running
a total of 7 PWAs on two devices (an LG G2 and a Nexus 6P)
that we evaluated as blocking factor. Our response variable is
the energy consumption of the devices.

Results. Our results show that service workers do not have a
significant impact over the energy consumption of the two devices,
regardless of the network conditions. Also, no interaction was
detected between the two factors. However, some patterns in the
data show different behaviors among PWAs.

Conclusions. This paper represents a first empirical investigation
on PWAs. Our results show that the PWA and service workers
technology is promising in terms of energy efficiency.

I. INTRODUCTION

Today the total activity on mobile devices like smartphones
and tablets accounts for an incredible 67% of the time spent on
digital media in the United States [1]. A considerable share of
this amount of time is spent on the mobile web (i.e. accessing
mobile-optimized websites via a browser on a mobile device),
where a growth of 62% in terms of digital time spent has been
observed in the last three years [1].

The mobile web is based on web apps conforming to
standard languages like HTMLS, CSS3, and JavaScript, which
offer (among many) the advantage of full application portabil-
ity across platforms (e.g. Android, Apple). Even if the browser
is becoming more and more a fully-fledged software platform
(e.g. the HTMLS standard provides APIs for geolocation,
accessing the camera, microphone), as of today the mobile web
struggles in providing a satisfactory experience to the user,
mainly due to the strong dependence on network conditions,
the lack of support for push notifications, and so on.

In this context, Progressive Web Apps (PWAs') are a new
technology advocated by Google as a way of overcoming
the above mentioned limitations. The advantages of PWAs
are clear when they are compared to classical web apps, for

Ihttp://developers.google.com/web

example: they can be launched from an icon in the home
screen of the device (like native apps do), they instantly
load regardless of the network availability, they support push
notifications. At the core of this new technology is the concept
of service worker, a set of APIs that allows developers to
programmatically cache and preload assets and data, manage
push notifications, and others. Technically, a service worker is
a JavaScript module running in its own thread and providing
generic entry points for event-driven background processing
(e.g. reaction to the receiving of a push notification).

If on one side service workers have been advertised as
performance boosters, network savers, and providers of better
user experience, on the other side they are additional code to
be downloaded, parsed, and run by the browser. Under this
perspective, it is interesting to investigate the price that web
developers and users may have to pay for those features in
terms of other software quality aspects, e.g. energy efficiency
(battery usage), performance, code complexity.

The goal of this paper is to assess the impact of service
workers on the energy efficiency of PWAs. In this study we
focus on the energy efficiency of PWAs because (i) energy is
one of the most scarce resources in mobile devices [8] and
(ii) there is no evidence about how service workers internally
use battery-draining resources like the network. In order to
achieve the aforementioned goal, we designed, executed, and
reported an empirical study on the energy efficiency of 7
real PWAs running with and without service workers, under
different network conditions (2G and WiFi), and on different
mobile devices (i.e., low-end and high-end). To the best of
our knowledge, this paper is the first empirical investigation
involving service workers and progressive web apps.

The main contributions of this paper are:

o the results of an experiment on the energy efficiency of 7
real progressive web apps under different conditions;

e a discussion of the obtained results and their implications;
e the experiment replication package with all the measured
PWAs, the analysis scripts, and raw data.

The target audience of this paper is composed of mobile
web developers, browser vendors, and researchers. We support
mobile web developers in knowing how the service workers
technology can impact the energy efficiency of their PWAs;
we aim to provide browser vendors with objective evidence
about the impact that service workers may have on the energy
efficiency of PWAs; finally, we aim at informing researchers
on the state of the practice about energy efficiency of PWAs.

The remainder of this paper is organized as follows. Sec-
tion II provides basic concepts about PWAs and service work-
ers, Section III presents the overall planning of our experiment
and Section IV describes the setup of our infrastructure for
executing the experiment. Section V presents and discusses
its results. Threats to validity and related work are reported
in Sections VI and VII, whereas in Section VIII we close the
paper and discuss future work.

II. BACKGROUND

A. Progressive Web Apps

A mobile web app is developed by using web technolo-
gies like HTMLS, CSS3, and different flavors of JavaScript.
Differently from hybrid mobile apps [7], [6], it is hosted on
a remote servers, served via the HTTP standard protocol, and
accessed by end users via a unique URL [5]. In other words,
mobile web apps are mobile-optimized websites accessed via
the browser apps installed on end users’ mobile devices (e.g.,
Chrome, Firefox, Opera).

Introduced in 2015, Progressive Web Apps are special
kinds of mobile web apps aiming at improving the mobile
web experience from the following four perspectives:

e Conversions: as suggested by their name, PWAs are based
on the progressive enhancement strategy. Specifically, a PWA
firstly targets the lowest common denominator with respect
to browsers functionality (e.g., static HTML contents only), 19
then, depending on the specific browser it is running in, moreg
advanced functionalities and refinements (e.g., animations, |3

OO0~ W —

asynchronous network access) are progressively enacted. i‘s‘
o Reliability: PWAs can be loaded instantly, even with low 16

or no network connectivity. This is achieved by using service};

workers as client-side proxies for programmatically caching19
and preloading assets and data, in principles eliminating the 2%
dependence on the network. 21
e Performance: in addition to caching and preloading, service%
workers can be also used for background processing in order24
to ensure an instant and reliable experience for users. 22
e Engagement: PWAs can be installed in the device and can27
be directly accessed from its home screen; also, PWAs support%g
push notifications from the cloud, allowing developers to easily
re-engage users; PWAs can provide an immersive experience
to users by running in a full-screen mode.

A PWA is served from a remote server and is initially
accessed as a standard web app via a browser. After some
accesses, the user can decide to install the PWA in the device,
thus promoting it to a top-level mobile app and gaining from
the above described benefits. From a technical perspective,
three conditions must hold for considering a mobile web app
as a PWA, namely: (i) it is served over HTTPS for security
reasons, (ii) it comes with a web app manifest® for declaring
app metadata like its name, icons, base URL, and (iii) it uses
at least a service worker (see next section).

Zhttp://www.w3.org/TR/appmanifest/

B. Service Workers

Service workers are a set of APIs for allowing developers to
programmatically cache and preload assets and data, managing
push notifications, and others. Service workers are standard-
ized by W3C? since 2009. According to the standard, a service
worker is a special case of web worker*, it is implemented in
a dedicated JavaScript file and runs in a separate thread with
respect to the main JavaScript thread. Intuitively, a service
worker can be considered as a piece of JavaScript code running
in parallel to the main page, providing persistent background
processing, and interacting with the rest of the PWA in an
event-driven fashion. A service worker can listen to events
dispatched from the main page (e.g., the fetch event is raised
when the main page makes network requests) or other sources
(e.g., the push event is raised when a push notification is
received from a remote server). Since providing all the details
about service workers is out of the scope of this paper, in
the following we describe the basics of service workers by
reusing the source code of a PWA belonging to our dataset
(see Listing 1).

var filesToCache =
/] ...
self.addEventListener(’install’,

e.waitUntil (

caches.open(cacheName) . then (function (cache) {

return cache.addAll(filesToCache);
b
)

});’
//

[/=...%/ 1;

function(e) {

self.addEventListener (’ fetch’
var dataUrl, analyticsUrl;
/] ...
if (e.request.url.indexOf(analyticsUrl)
fetch(e.request);
} else {
e.respondWith (
caches.match(e.request).then(function(response) {
/]
return response ||
resp) {
/] ..
caches.open(cacheName) . then (function (cache) {
cache.put(e.request.url, response.clone());
R

return resp;

, function(e) {

0) {

fetch(e.request).then(function (

b
)
}
b

Listing 1. Example of service worker (adapted from the Billings Gazette
PWA)

The meaning of the listing is the following: when the service
worker is installed a set of static resources are added to a
local cache (lines 1-11) and when the main page makes any
network request (e.g., an Ajax call), then the service worker
intercepts it (line 13), leading to two cases: a) the requested
resource is related to Google Analytics, so it is always directly
performed (lines 14-16); b) otherwise (line 16), a cache of
previous requests is queried (line 18) and the cached object
is responded (if any, line 20), otherwise the network request
is actually performed (line 20 again), its result is put into

3http://www.w3.org/TR/service-workers
“http://www.w3.org/TR/workers

the cache for future use (lines 22 and 23) and returned as a
response to the main page (lines 20 and 25).

The conjecture of this paper is that the execution of a service
worker may impact the energy consumption of the web page
either positively (a service worker is additional software that is
executed, thus it consumes additional resources) or negatively
(caching may imply less access to the network).

III. EXPERIMENT PLAN

The goal of our experiment is to assess the impact of service
workers on the energy efficiency of PWAs. In order to achieve
the above mentioned goal in an objective and replicable
manner we planned our experiment by following well-known
guidelines on empirical software engineering [15], [10]. In the
following we report how we planned our experiment.

A. Research Questions

The research research questions of our study are:

RQ1 - How does the use of service workers impact the energy
efficiency of progressive web apps? To answer this question
the app will be served from a proxy with the service worker
turned on and off. Statistical analysis will be used to determine
whether there is a significant difference.

RQ2 - How does the use of service workers impact the energy
efficiency of progressive web apps under different network
conditions? Since PWAs can leverage service workers to be
able to work offline in bad network conditions (or when no
network is available) and cache app shells, it is expected that
they will make less network requests, thus using less energy.
Network conditions can be simulated using a proxy server,
providing a method to test if this premise is true.

B. Subjects

As for the choice of subjects, that is PWAs to experiment
with, first alexa.com’s list of most popular websites was tried
to be mined to identify the PWAs and choose a reasonable
number of apps mined from the list. However, it turned out
that very small percentage of the top 500 apps are actually
PWAs and down sampling this small set for the ones that
are network-intensive (and thus more informative for the ex-
periment) would be an nonviable option. Instead, we selected
7 apps from a repository of PWAs (https://pwa.rocks). The
selection has been performed in a pseudo-random manner
because we wanted to avoid toy examples or PWAs with
very specific characteristics (e.g., games), which could have
been not representative of the population of data-driven mobile
PWAs, the most recurrent application scenario for PWAs.

Table I presents the PWAs we selected for our experiment,
they belong to different categories (e.g., news, shopping), are
quite variegated in terms of both overall size and the size of
their service workers (locs,,, the last column of the table). The
overall size of a PWA has been computed by automatically
loading each PWA in the browser, locally downloading the
whole front-end (i.e., all JavaScript scripts, images, HTML and
CSS files, and other resources), and then calculating the size
of the downloaded resources. The value for loc,, has been

ID Name Category Size locsw

aliexpress AliExpress Shopping 2.1Mb 69

babe Babe News News 1.2Mb 156

flipkart Flipkart Shopping 3.8Mb 907

gazette The Billings | News 2.1Mb 60
Gazette

googleevents Google 1/0 2016 Events 4.2Mb 358

washingtonpost | The Washington | News 40Mb | 85
Post

wikipedia Wiki offline Knowledge | 800Kb 1009

TABLE I

SELECTED PROGRESSIVE WEB APPS

computed by (i) identifying the JavaScript file of the used
service workers via a suitably crafted JavaScript instruction
injected into the browser during the loading of the PWA, (ii)
beautifying the source code of the service worker (in some
cases it was minified/obfuscated), and (iii) reporting the total
number of lines of code after the beautification. Finally, it
is interesting to note that in 5 cases over 7 the considered
PWAs are real PWAs (e.g., AliExpress, the Washington Post),
meaning that they have a real large user base, a complex
business logic, and they have not been developed for simple
experimentation or testing purposes; the other 2 PWAs (i.e.,
The Billings Gazette and Wiki offline) are experimental or
unofficial apps.

C. Variables and Hypotheses

Three independent variables are used in the experiment: type
of Android device, the type of the network connection and the
service worker status (is it enabled or disabled).

The type of device has two treatments: low-end and high-
end. A low-end device is considered to be a smartphone that
is reasonably priced (around 200 euros) but of modest/legacy
performance. A high-end device is described as the flagship
by its manufacturer and has high performance. The low-end
and high-end devices used for this experiment are respectively
a LG G2 and a Huawei Nexus 6P. The specs for each device
are reported in Table II.

Device Model Huawei Nexus 6P LG G2

CPU Qualcomm Qualcomm
Snapdragon 810 Snapdragon 800

Processor speed 2 GHz 2.3 GHz

Total cores 8 4

RAM 3 GB 2GB

Resolution 2560x1440 1920x1080

Screen diagonal 5.7 5.2”

0S Android 6.0 Android 4.4

TABLE II

SPECIFICATIONS OF USED ANDROID DEVICES

The network conditions variable has two treatments: 2G and
WiFi. To simulate those network conditions the proxy serves
the pages with reference latencies and bandwidths. These were
determined based on a well-accepted network performance
source [2] and by adding the latency of the experiment network
connection (5 ms). The service worker status variable has two
treatments as well: on and off. To turn the service worker off
the proxy rewrites every response that is an HTML page with

JavaScript code that removes the serviceWorker object
from window.navigator.

The dependent variable is the energy consumption of the
device. Its values are collected by means of the Trepn Power
Profiler’, a software-based tool that estimates the power con-
sumption of Android devices. This tool has been reported as
sufficiently accurate with respect to hardware power measure-
ment (e.g. the Monsoon power monitor), with an error margin
of 99% [3]. For the dependent variable, we hypothesize an
additive linear model of the form:

Vi =p+Ti;+vij+(tv)i; + B (D

Where y; represents our response variable (energy consump-
tion), p is the overall mean of the response, 7; ; and v; ; are the
effects of treatments 7 and v for observations ¢ (respectively,
service workers and network conditions), (7v); ; is the effect
of the interaction of the treatments and J; is the blocking
factor (the device model). Hence, the following two-tailed
hypotheses are formulated:

H1: If the effect on energy consumption of the sites browsed
with service worker off is labeled with 7; and the effect
of the sites browsed with service worker on with 75, then
the null and alternate hypothesis are defined as:

HlQIleTQ HlllTl#TQ

H2: If the effect on energy consumption of the sites browsed
with network conditions 2G and WiFi respectively is
labeled with 17 and v5 the null and alternate hypothesis
can be defined as:
H2y: v =11 H2, vy # vy

H3: The null hypothesis is that the service worker status

and the network condition do not interact in affecting
the energy consumption of the website. The interaction
of the effect of the service worker status and the effect
of the network condition on the energy consumption is
labeled as (7v). The hypothesis are:

H30 . (TV)Z‘J‘ =0V i,j

H3y : 34,7 such that (tv); ; # 0

D. Experiment Design

To get the data that will represent the observed situation
accurately, a full 2x2x2 factorial design has been performed. In
other words, all possible combinations of treatments have been
assigned to each of our factors. During the experiment, we
automatically performed a series of tap and/or gesture paths for
each app in order to simulate the average user behavior on the
subject and represent the app test scenario. Each series consists
of roughly 10-15 commands. For each possible combination of
treatments 8 measurements are conducted. The measurements
executions are randomized.

E. Data Analysis

The data gathered by the experiment will be analyzed
quantitatively. Beginning this analysis the first test indicates

Shttps://developer.qualcomm.com/software/trepn-power-profiler

whether the gathered data can be assumed to be approximately
normally distributed. For a first indication the mean and the
median of the data are used. For a visual indication box plots
are used and for a quantitative measurement the Shapiro-Wilk
test is used.

It is expected that the data will be analyzed using a three-
way ANOVA. However, this assumption will be tested in the
result section before continuing with the three-way ANOVA.
To verify this assumption the normality of the distribution
of the residuals is tested with a Shapiro-Wilk test. The
homoscedasticity is verified by a Levene’s test.

Provided that the verification of the assumptions shows that
an ANOVA test can be performed a three-way ANOVA test
will be performed to analyse the data. This test has a full
factorial design, thus measuring all possible combinations of
variables. This will eventually be used to determine whether
the null hypotheses can be rejected.

All the above mentioned test will be performed using a 95%
confidence interval, thus p-value ; 0.05.

F. Replicability of the Experiment

To allow easy replication and verification of our experiment,
a complete replication package® is publicly available to inter-
ested researchers. Our replication package includes: a 38-pages
report presenting the details of the experiment, the source code
of the measurement scripts, raw data for each phase of the
experiment, and the R scripts for exploring, summarizing, and
analyzing measurement data.

IV. EXPERIMENT EXECUTION

To perform our experiments, as discussed earlier, we lever-
aged several tools that help automation of task execution on
the Android platform. In the following we will describe the
tool stack we used to achieve the goal of deterministic scenario
execution accompanied with energy consumption information
gathering. The order of operations that are performed in one
experiment execution is shown in Figure 1

To “freeze” the PWA contents and behavior we first record
all of the traffic needed to perform one execution of the
scenario for a particular PWA on a local desktop computer
that acts as a proxy between the mobile device and the Internet
(as seen in steps 1 and 2 of Figure 1). When all the contents
served by the PWA have been recorded, local PC is ready to
inject SW disabling script and/or set latency and bandwidth
constraints to simulate different experiment factors. In other
words, PC will act as a server from which mobile device will
request the PWA. Content recording and response rewriting
features described above are courtesy of the Fiddler Proxy
software’ .

Then the Python script running inside Monkeyrunner® tool
that orchestrates the scenario execution can be started, as
depicted in step 3. This orchestration script will get as input
the website to test, specific values for factors of the experiment

Shttp://s2group.cs.vu.nl/PWA2017ReplicationPackage
Thttp://www.telerik.com/fiddler
Shttps://developer.android.com/studio/test/monkeyrunner/index. html

Prchestration|
script 1. HTTP request
3 Sateree. | Figdler | impersonate phone Real website
proxy Record traffic
Monkey- 2. HTTP response: ul
runner T \
7b. Possibly ~—
altered

9. Save collected| HTTP
response

) data

4. Start scenario 7o HTTP

run request as
part of scenario
t ¥

Trepn

profiler Chrome

Monkey-
runner

Fig. 1. Scenario execution. First record traffic, then replay that traffic on
mobile device request, possibly altering the responses and then finally record
energy consumption data.

and the text file, referred to as scenario file), that represents the
series of screen taps and/or gestures that have to be performed
as part of this experiment run and then wake up the device to
start the execution of scenario file (step 4).

Further, as part of steps 5 and 6, the part of Monkeyrunner
tool running on Android device will start the Trepn Profiler
energy monitor and clean instance of Chrome browser (i.e.
all persistent website data such as cookies and caches will be
deleted), instrumenting it to load the desired website and start
performing screen taps and gestures.

Those taps and gestures will incur network requests that
fetch the resources needed for the PWA being executed. How-
ever, since the phone is connected to our preset proxy, PWAs
will not be fetched directly, but will be served from our local
machine. With proxy up and running, we are able to intercept
the request and alter it, by for example sending the reply with
specific bandwidth and/or latency or injecting JavaScript code
to remove the navigator.serviceWorker object from
window top-level object (essentially removing the entry point
into the ServiceWorker API).

What was previously described is a series of HTTP requests
and replies that is shown as step 7(a for request and b for
reply), which will be stopped when the end of scenario text file
is reached. When this event happens, Chrome will be closed
and Trepn Profiler will save the data, which can later on be
pushed to the local PC, which is represented by steps 8 and
9 in Figure 1 that are the last steps performed in experiment
execution.

V. RESULTS

This section presents the descriptive statistics for our dataset
(Section V-A) and the results of our hypotheses testing (Sec-
tion V-B). Moreover, in Sections V-C and V-D we answer
the research questions of our experiment by elaborating and
interpreting the results of our statistical analyses. Finally,
Section V-E discusses how each specific PWA performed in
terms of energy consumption across the whole experiment.

Joules

100
|

50
1

Energy Consumption

Fig. 2. Measured energy consumption values

250+

200+

150+

Energy

501

IggIZ nxéﬁp
Type of mobile device

Fig. 3. Measured energy consumption values per mobile device (in Joules)
A. Descriptive Statistics

The energy consumption of all PWAs (two versions for
each PWA, with service workers on and off) of our dataset
is summarized in Table III.

Energy Consumption

Phone Min. Max. Median Mean SD Cv

Both 52.44 23790 11341 12433 4532 0.36

LG G2 100.61 23790 156.21 157.38 37.78 0.24

Nexus 52.44 13497 87.44 91.28 22.14 0.24
TABLE III

DESCRIPTIVE STATISTICS FOR THE ENERGY CONSUMPTION VALUES (IN
JOULES) — SD= STANDARD DEVIATION, CV = COEFFICIENT OF
VARIATION)

As shown in the boxplot in Figure 2, the dataset appears
quite positively skewed, with the mean higher than the median.
Indeed, the data scores negatively for normality (W = 0.95141,
p-value = 0.02459). This is due to the high difference in the
energy consumption values between the two mobile devices,
as can be also observed in the boxplot in Figure 3. For this
reason, for the rest of our analysis we will use the type of
mobile device as a blocking factor.

B. Hypothesis Testing

As anticipated in Section III-E, we performed a 3-way
ANOVA to test our hypotheses. We verified the assumptions
of ANOVA as follows:

e errors are statistically independent: this assumption is
satisfied by the randomization of our measurement runs.

o residuals are normally distributed: we verified this by
performing a Shapiro-Wilk normality test on the residuals
(W = 0.97009, p-value = 0.1775).

o Homoscedasticity: we verified homoscedasticity by
means of Levene’s test (F=0.0966, p-value=0.9616).

Then, we proceeded with testing our hypothesized model.
The raw analysis data from the three-way ANOVA test is
shown in table IV. None of the p-values is below our signifi-
cance threshold, except for the blocking factor (i.e. the type of
mobile device, see below). This means that we are unable to
detect a significant difference between the energy consumption
of a PWA using service workers and that of the same PWA not
using service workers. Furthermore, no significant interaction
between treatments is detected by the ANOVA. Thus, we
cannot reject the null hypotheses H1y, H2; and H3(and
we cannot claim that service workers influence the energy
consumption of a PWA running on a mobile device.

Df Sum Sq Mean Sq F value p-val
SW 1 98.15 98.15 0.11 0.75
Network 1 3164.28 3164.28 3.41 0.07
Phone 1 67974.31 67974.31 73.33 j0.05
SW:Network 1 66.93 66.93 0.07 0.79
Residuals 52 48201.45 926.95
TABLE IV

THREE-WAY ANOVA RAW RESULTS

The ANOVA did show also that the type of mobile device
has a very strong impact on energy consumption. This further
validates our design choice of considering the type of mobile
device as a blocking factor for our experiment. We expected
such outcome, as different screen sizes, chip sets and other
hardware specifics of mobile devices will very likely lead
to different energy consumption values. Additionally, newer
mobile devices tend to be more energy efficient and the
Huawei Nexus 6P is several generations newer than LG G2.
This observation was more than expected, nevertheless it is
still interesting because it confirms that the experiment has
been conducted in a valid manner.

Factor Diff. Lower Upper p-val.
Bound Bound (adj.)
SW on vs. SW off | 2.56 -12.88 18.00 0.74
WIFI vs. 2G -14.52 -29.97 -0.919 0.065
Nexus vs. LG -67.47 -82.94 -51.99 j0.05
TABLE V

RESULTS OF TUKEY’S HSD TEST WITH 95% CONFIDENCE INTERVALS.

In order to further validate our analysis, we performed post-
hoc tests (namely, Tukey’s Honest Significance Difference test
[13]) on our ANOVA. Results of the test are reported in
Table V. For brevity reasons, we omit the results related to
the interactions between factors, also considering they do not
achieve statistical significance.

250 1

2004

1504

Energy

1004

504

T
swoff swon

(a) Service workers vs. energy on LG G2

T
swoff swon

(b) Service workers vs. energy on Nexus 6P

Fig. 4. Energy consumption of the PWAs with service workers on and off

C. Does the use of service workers impact the energy effi-
ciency of PWAs? (RQI)

In the previous section we already assessed that, in overall,
the use of service workers does not have a statistically sig-
nificant impact on the energy efficiency of PWAs. However,
as shown in Figure 4, we can observe that the median of the
consumed energy of PWAs with service workers on is always
lower than the median of the consumed energy of PWAs with
service workers off.

Interestingly, if we consider how PWAs consume energy
across mobile devices (see Table VI), this difference is quite
evident in low-end mobile devices, i.e. the LG G2, where
it accounts to 159.6 - 150.7 = 8.9 Joules), whereas it gets
extremely minimal when considering high-end mobile devices,
i.e. the Nexus 6P, where it accounts to 87.86 - 87.44 = 0.42
Joules only (well within the measurement error margin). This
result is quite encouraging since it may be an indication of
the improvements that hardware manufacturers and platform
vendors (i.e., Google for Android in this case) are making
with respect to the energy efficiency of the software running
on their products.

250- 250-
5200- $ i 200-
D 150 - S 150-
€ 100- == S100- =——5
50- 50- ‘
0- : : 0- : :
2g wifi 2g wifi

(a) Network on LG G2 (b) Network on Nexus 6P

Fig. 5. Energy consumption of the PWAs under different network conditions

D. Does the use of service workers impact the energy effi-
ciency of PWAs under different network conditions? (RQ2)

As shown in Figure 5 and 6, our PWAs performed in a
consistent manner with respect to the networking conditions,
independently of whether service workers were active or not.
As detailed in Table VII, both low- and high-end devices
consumed less energy when running PWAs under a WiFi
network, with energy consumption with a median of 146.5
and 79.97 Joules for the LG G2 and Nexus 6P mobile
devices, respectively. Also, since WiFi radios provide higher
bandwidth, this means that in principles the browser running
a PWA downloads the needed assets and data (e.g., the initial
index.html file, images, CSS stylesheets, JavaScript files)
in less time, thus consuming less energy.

We also investigate on how the presence of service workers
may impact the energy consumption of the PWAs according
to all the possible combinations of (i) type of mobile device
and (ii) network conditions. As shown in Figure 6, the use
of service workers has a marginal impact on the energy
efficiency of PWAs when considering the same mobile device
and network conditions.

This means that if we fix the mobile device and network
conditions, the gains provided by service workers in terms

Energy Consumption

SW Min. Max. Median Mean SD CV
LG G2

swoff 1006 2379 159.6 156.1 39.72 0.25

SW on 1044 210.5 150.7 1587 37.18 0.23
Nexus 6P

swoff 5244 1350 87.86 89.82 21.83 0.25

swon 5530 133.10 87.44 108.8 23.17 023
TABLE VI

STATISTICS ON THE ENERGY CONSUMPTION OF PWAS WITH SERVICES
WORKERS ON OR OFF ACROSS DEVICES

Energy Consumption

SW Min. Max. Median Mean SD Cv
LG G2

2G 108.3 2379 165.1 167.7 3798 0.22

WiFi 100.6 208.2 146.5 147.0 3592 024
Nexus 6P

2G 72.89 126.8 9242 95.85 17.00 0.17

WiFi 5244 1350 79.97 86.7 26.15 0.30
TABLE VII

STATISTICS ON THE ENERGY CONSUMPTION OF PWAS UNDER DIFFERENT
NETWORK CONDITIONS ACROSS DEVICES

250 - 250 -

2150 - D 150 -

2] [}

& 100- 2100 =——s =——
50 - w 50 -
07 0 0,

| |
swoff swon swoff swon

(a) LG G2 over 2G (b) Nexus 6P over 2G

250 - 250 -
Brso —— S50

G 1001 R
4 50- TR
0- 0- :

| |
swoff swon swoff swon

(¢) LG G2 over WiFi (d) Nexus 6P over WiFi

Fig. 6. Energy consumption of the PWAs (in Joule) on different mobile
devices and under different network conditions

of user experience seem to have a very low impact on the
energy consumption of the mobile device running them. This
result can be seen as an encouraging indication that service
workers is a viable technology, both for mobile web developers
and users, providing features that are strongly needed by
users (e.g., support of push notifications, better performance
of the web) without relevant drawbacks in terms of energy
consumption, which is one of the main concerns the mobile
development arena.

E. PWA-specific Results

In this section we zoom into the specificities of each single

PWA of our experiment as a way to better understand and
provide additional insights about the previously discussed
results. More specifically we (i) analysed the energy consump-
tion of each single PWA across the various factor-treatment
combinations of our experiment and (ii) reviewed the source
code of the service worker of each PWA in order to explain
its specific performance during the experiment.
Energy consumption of each PWA. Figure 7 presents the
energy consumption values of each PWA across the considered
mobile devices and network conditions. We can observe that
different PWAs have different energy consumption values,
even under the same contextual conditions (i.e., when running
on the same mobile device and with the same available
network); for example, the Ali Express PWA consumes far
more energy than Flipkart when running on the LG G2 device
(first and third facets of Figure 7(a)). This result is expected
since each PWA differs from the others in terms of size,
business logic, interaction with browser resources, interaction
with the network.

It is also interesting to note that there seem to be no evident
pattern about the energy efficiency of a PWA under different
contextual conditions; for example, The Billings Gazette with
service worker consumes more when running on the Nexus 6P
device or over a WiFi network, wheres it consumes less when
running on the LG G2 device or over a 2G network. This
result may depend on the specific implementations of service
workers, they are discussed later in this section.

aliexpress babe flipkart gazette googleevents washingtonpost wikipedia

250 -

200" s — $ | $
5 = ==
2 —
5 100+ —

50 -

o

swaoff swon swoff swon swoff swon swoff swon swoff swon swoff swon swoff swon
(a) Energy consumption values with service workers on and off on the LG G2
alisxpress babe fiipkart gazatte googlesvents washingtonpost wikipedia

250 -

200~
31507
2 S— _ =
o qpp - —— — |

e — —
50-
04
swoff swon swoff swon swoff swon swoff swon swoff swon swoff swon swoff swon
(b) Energy consumption values with service workers on and off on the Nexus 6P
aliexpress babe flipkart gazette googleevents washingtonpost wikipedia

250 -

200 - |
50- $

==

swoff swon swoff swon swoff swon

googleevents washingtonpost wikipedia

5 — I_Ll A
©
2 e ==2=—l |
50 -
o
swoff swon swoff swon swoff swon swoff swon
(c) Energy consumption values with service workers on and off under a 2G network
aliexpress babe flipkart gazette
250 -
200 -
s =
©
2
w100~

L

== es

swoff swon swon swon swoff

!_l_l
_l_l

== B

== = ==

swon swoff swon swoff swon swoff swon

(d) Energy consumption values with service workers on and off under a WiFi network

Fig. 7. Energy consumption values of each PWA under different contextual conditions

Trends analysis. In order to better understand how service
workers may impact the energy consumption of the considered
PWAs, we categorize each PWA according to whether it
consumes more in combination with (i) the presence of service
workers in the PWA and (ii) the context in which it is running,
i.e., mobile device and network conditions. The results of such
categorization is a set of 28 combinations (7 PWAs * 2 devices
* 2 network conditions) and are shown in Table VIII.

We can observe that in 20 cases including a service worker

in a PWA had a negative impact on the energy efficiency of the
app (i.e., the PWA consumes more when a service worker is
present). In the 8 remaining cases, the energy consumption is
lower in PWAs without service workers with respect to PWAs
with service workers. This result suggests that mobile web
developers should be careful when including a service worker
in their PWA for enhancing the user experience of their PWAs.
In many cases the effect on energy consumption is minimal,
so it may be worth trading off energy consumption for a

better user experience. Nevertheless it is important for mobile
web developers to know that in some cases when adopting
service workers their PWA may potentially consume more
energy. Under this perspective it will be useful for mobile
web developers to have a recommendation tool for providing
suggestions about this trade off based on the actual energy
consumption of the service workers of their PWAs; this is
part of our future work.

Manual reviews of service workers code. The lack of evident
trends across all PWAs let us conjecture that a potential con-
founding factor would have been the specific implementation
of the service worker of each PWA. In order to give an answer
to this conjecture we manually analyzed the source code of the
service worker of each PWA with the goal of finding recurrent
technical solutions or patterns that may have an impact on its
energy consumption.

Table IX shows the development practices we considered
when analyzing the source code of the service worker of
each PWA. Firstly, we considered the events listened by the
service worker (e.g., push notification, data fetching). As
expected, the majority of service workers are managing the
installation and activation of the service worker itself and
the fetch event; this is because those are the standard events
to be managed for managing the caching of remote data
and static assets, which is done in almost all the cases. We
also categorized service workers according to whether their
code has been obfuscated or minified because in principles
obfuscated/minified JavaScript code can be more complex and
its parsing and execution may be more resources demanding;
we observed a certain balance between obfuscated/minified
and clean code across PWAs. Finally, we report the cyclomatic
complexity and cyclomatic complexity density of the source
code of the service worker, as identified by the complexity-
report open-source tool’.

In Table IX we highlight in bold the PWAs in which
the presence of a service worker consistently impacts their
energy efficiency in a negative manner (i.e., they consume
more energy with service workers on all devices and all
network conditions). Those PWAs are Google Events, The
Washington Post, and Wikipedia and they are good candidates
for identifying the development practices that may have an
impact on the energy consumption of service workers. For all
development practices, the differences in the values of those

9http://www.npmjs.com/package/complexity-report

LG G2 Nexus 6P 2G WiFi
PWA swoff | swon swoff | swon swoff | swon swoff | swon
aliexpress v - [%) - v - v
babe v %) - - v %) -
flipkart v - v v - - '
gazette %) - v (%) v
g.events - [%) v - v [%)
W. post @) @) [@) [@)
wikipedia v v [%) v

TABLE VIII

CASES IN WHICH ENERGY CONSUMPTION IS HIGHER FOR EACH PWA
(CIRCLED CHECKMARKS ARE USED WHEN THE DIFFERENCE IS ABOVE 10
JOULES)

PWA Listened Caching Obf./ Compl- Compl.
events minif. exity density

aliexpress PN v v 12 21.4

babe LAEPN v 9 10.5

flipkart LAF v v 131 19.0

gazette LAF v 5 16.1

g. events LAJEM v 16 15.8

W. post LAPN v 7 10.6

wikipedia LAES.M,N v v 194 24.7

TABLE IX

DEVELOPMENT PRACTICES WITHIN SERVICE WORKERS. THE VALUES OF
LISTENED EVENTS ARE: I = "INSTALL”, A = "ACTIVATE”, F = "FETCH”, P
="PUSH”, N = "NOTIFICATIONCLICK”, S = "SYNC”, M = "MESSAGE”.

PWAs are not significant and do not follow any evident trend.
Nevertheless, we can see a mild prevalence of both (i) the
service workers listening to a higher number of events and (ii)
those that are obfuscated/minified; those two practices may be
seen as two potential causes of higher energy consumption.
However, this is only a conjecture as we cannot rigorously
conclude that those two practices are linked to higher energy
consumption because of the low statistical significance we
could achieve with only 7 PWAs (we plan to better investigate
on these initial results in our future extension of this work).

VI. THREATS TO VALIDITY

In what follows, we are going to categorize threats to va-
lidity based on categorization given in [15], and describe how
each of those is applicable to our experiment is manifested.
External validity. Since PWAs have recently been introduced
as a novel approach to developing mobile web apps, there are
still platforms that do not support them. The most notable
example is Apple iOS, a major mobile platform that we
could not include in our research, which prevented us from
generalizing the results of our experiment to Apple devices.
Moreover, due to resources constraints, we had to restrict
the set of mobile devices used in the experiment to two
specific devices (i.e., LG G2 and the Nexus 6P), potentially
impacting the generalization of our results to the whole set of
Android devices. Nevertheless, we mitigated this potential bias
by choosing two mobile devices that cover both low-end and
high-end categories of hardware specs and different versions
of Android.

Moreover, we executed realistic usage scenarios of the
PWAs, which means manual work (e.g., for recording the
scenarios) for each considered PWA. As a consequence, we
had to select a subset of all existing PWAs for performing
the experiment in reasonable time. We mitigated this potential
threat to validity by selecting PWAs in a pseudo-random
manner, across different categories and with different size;
also, the considered PWAs are designed and developed by
independent development teams.

Internal validity. Since it is arguably infeasible to reliably
perform real-life tests on all of the PWAs,we had to make a
selection. Given the fact that the scope of our experiment is
mobile web development, we decided to focus only on cate-
gories of network intensive PWAs such as shopping or news,
and disregard the ones that use specific phone hardware (e.g.
QR code scanners, voice recorders) since arguably it would be

difficult to implement those using traditional web technologies
and service workers play a relatively secondary role in them.
This could disable us from generalizing our conclusions to
the full population of existing PWAs, but we decided to make
such a decision since it gives more insights to comparison
between traditional web apps and PWAs. Related to this point
is the fact that PWAs have only recently been introduced and
that programming techniques used in development in this first
batch of PWAs might not utilize the potential of PWAs to the
fullest.

Conclusion validity. The setup of this experiment may be
subject to random events that may have disturbed our measure-
ments (e.g., background tasks, inner Android OS scheduling).
To mitigate this validity threat we performed the experiment
with the same fixed set of treatments for the 8 runs of each
PWA. To lower the chances of random events, we kill all of
the background applications, disable all applications that are
crash-prone and make sure that even those applications that
are left running since they cannot be closed (e.g. core Android
functionalities) are unable to use the network by blocking their
requests on Fiddler.

Construct validity. Our experiment has been performed in
a tightly controlled lab environment, which is a necessary
precaution we had to take to minimize randomness, but this lab
environment has the consequence of applying the treatments in
an artificial way which might not accurately represent the in-
the-wild treatment effects. Firstly, we applied the 2G network
conditions treatment by accurately simulating the latency and
bandwidth of average 2G connection. However, on mobile
devices different chips (different radios) take care of WiFi and
cellular connections. This might have had a small effect on the
energy consumption of a device.Another treatment that may
have an effect on PWAs is disabling the service worker. In
this case we injected some JavaScript code in the main page
of each PWA to remove the service worker capability from the
browser. Any injected JavaScript code can have influence on
the web site behaviour, but we mitigate this by close inspection
and testing of the code that we injected and we kept it as
minimal as possible. Lastly, to minimize randomness in terms
of latency and bandwidth that is inherent to the Internet, we
served the pages from a local proxy in which we could tightly
control latency and bandwidth.

VII. RELATED WORK

As introduced in Section I, to the best of our knowledge
this is the first empirical study investigating service workers
and progressive web apps.

The state-of-the-Art on the energy efficiency of mobile
web apps is also scarce, but it provides some interesting
insights. For example, Thiagarajan et al. [11] analyze the
energy consumption of 26 web apps. Measurements were
performed using a hardware multimeter and a patched version
of the Android browser. The differences between this study
and ours are many; among them, we can highlight that (i)
the two studies focus on different subjects (standard web apps
VS PWASs), and (ii) during our experiment we measured the

energy consumption of PWAs across their main functionalities
over time using execution scenarios, rather than focussing only
on the initial load of the web app.

Other researchers focused instead on eliciting best-practices
for energy efficiency. For example, Linares-Vasquez et al. [4]
aim at identifying whether some API calls consume more en-
ergy than others, and if sequences of API calls (patterns) repeat
themselves frequently, causing anomalies in energy consump-
tion. The study analyzed the execution traces of 55 Android
applications, looking for the most energy-greedy Android
API calls. Results show that APIs related to GUI & Image
Manipulation and Database are the most energy-consuming.
Tonini et al. [12] evaluate the energy impact on two best-
practices proposed by Google to improve performance in
Android applications. The practices can be summarized as:
“use appropriate for syntax” and “avoid getters/setters”. The
two best practices were applied in different implementations
of the same mobile application and tested upon three different
smartphones.

An interesting line of research has been pursued on empiri-
cal studies targeting the performance of mobile web apps. For
example, Vesuna et al. [14] designed and executed a study on
how caching may impact the mobile browser performance over
a dataset of 400 web pages. Each run the web page was only
loaded in the browser, no execution of complex usage sce-
narios was involved. Differently, Nejati and Balasubramanian
[9] measured performance bottlenecks in mobile and desktop
browsers. The focus of this work is on the lower levels of
the browser engine and it is based on a dedicated in-browser
performance profiler for Android Chromium. Both studies
have some similar aspects for what concerns the experiment
design, but they all differ in the goal of the experiment (i.e.,
mobile web performance VS energy efficiency assessment).

VIII. CONCLUSIONS AND FUTURE WORK

Up to today there was no evidence about how service work-
ers internally use battery-draining resources when running
on a mobile device. In this paper we presented the design,
execution, and the results of an empirical study on the energy
efficiency of service workers in the context of progressive web
apps. Our results show that service workers do not have a
significant impact over the energy consumption of the two
devices, regardless of the network conditions. Nevertheless,
we observed different energy consumption among PWAs; we
inspected the source code of the service worker of each PWA
to investigate the potential causes of this phenomenon.

As future work we are planning to (i) push further with
the level of automation of our measurement infrastructure so
that we will be able to perform a large scale study involving
hundreds of PWAs; (ii) deepen the analysis of the source code
of service workers in order to find additional development
practices which may impact the energy consumption of the
PWAs hosting them; (iii) investigate on other interesting
dimensions in addition to energy efficiency, including the load
times of PWAs when leveraging the caching capabilities of
service workers.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Adam Lella, Andrew Lipsman. The 2016 U.S. Mobile App Report,
2016. comsCore white paper.

I. Grigorik. High Performance Browser Networking. O’Reilly Media,
2013.

M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma.
Modeling, Profiling, and Debugging the Energy Consumption of Mobile
Devices. ACM Comput. Surv., 48(3):39:1-39:40, Dec. 2015.

M. Linares-Vasquez, G. Bavota, C. Bernal-Cardenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk. Mining energy-greedy api usage
patterns in android apps: An empirical study. In Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014,
pages 2—-11, New York, NY, USA, 2014. ACM.

1. Malavolta. Beyond Native Apps: Web Technologies to the Rescue! In
Proceedings of the Ist International Workshop on Mobile Development,
Mobile! 2016, pages 1-2, New York, NY, USA, 2016. ACM.

I. Malavolta, S. Ruberto, T. Soru, and V. Terragni. Hybrid mobile apps in
the google play store: An exploratory investigation. In Mobile Software
Engineering and Systems (MOBILESoft), 2015 2nd ACM International
Conference on, pages 56-59, May 2015.

1. Malavolta, S. Ruberto, V. Terragni, and T. Soru. End Users Perception
of Hybrid Mobile Apps in the Google Play Store. In Mobile Services
(MS), 2015 IEEE International Conference on, pages 25-32. Institute
of Electrical and Electronics Engineers (IEEE), June 2015.

M. Nagappan and E. Shihab. Future trends in software engineering
research for mobile apps. In 2016 IEEE 23rd International Conference

[9]

[10]

[11]

(12]

[13]

[14]

[15]

on Software Analysis, Evolution, and Reengineering (SANER), volume 5,
pages 21-32. IEEE, 2016.

J. Nejati and A. Balasubramanian. An in-depth study of mobile browser
performance. In Proceedings of the 25th International Conference on
World Wide Web, pages 1305-1315. International World Wide Web
Conferences Steering Committee, 2016.

E. Shull, J. Singer, and D. I. Sjgberg. Guide to advanced empirical
software engineering, volume 93. Springer, 2008.

N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh.
Who killed my battery?: analyzing mobile browser energy consumption.
In Proceedings of the 21st international conference on World Wide Web,
pages 41-50. ACM, 2012.

A. R. Tonini, L. M. Fischer, J. C. B. de Mattos, and L. B. de Brisolara.
Analysis and evaluation of the android best practices impact on the
efficiency of mobile applications. In 2013 Il Brazilian Symposium
on Computing Systems Engineering (SBESC), pages 157-158. IEEE
Computer Society, 1 Nov. 2013.

J. W. Tukey. Comparing individual means in the analysis of variance.
Biometrics, 5(2):99-114, June 1949.

J. Vesuna, C. Scott, M. Buettner, M. Piatek, A. Krishnamurthy, and
S. Shenker. Caching Doesn’t Improve Mobile Web Performance (Much).
In 2016 USENIX Annual Technical Conference (USENIX ATC 16).
USENIX Association, 2016.

C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering - An Introduction.
Kluwer Academic Publishers, 2012.

