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Abstract. Context. Energy efficiency is gaining importance in the
design of software systems, but is still marginally addressed in the area of
microservice-based systems. Energy-related aspects often get neglected
in favor of other software quality attributes, such as performance, service
composition, maintainability, and security.

Goal. The aim of this study is to identify, synthesize and empiri-
cally evaluate the energy and performance overhead of monitoring tools
employed in the microservices and DevOps context.

Method. We selected four representative monitoring tools in the
microservices and DevOps context. These were evaluated via a controlled
experiment on an open-source Docker-based microservice benchmark
system.

Results. The results highlight: i) the specific frequency and workload
conditions under which energy consumption and performance metrics
are impacted by the tools; ii) the differences between the tools; iii) the
relation between energy and performance overhead.

1 Introduction

In recent years, the motivation to reduce energy consumption by conservation
and efficient use has grown significantly. It has become not only a means for
gaining control over costs but, most importantly, a way of reducing the carbon
footprint of economic and human activity. This is reflected across all industries,
including software development [16]. Nevertheless, energy consumption has only
recently come to attention in literature [5]. With the advent of microservice-
based systems coupled with agile (specifically DevOps) practices, a great focus
is put on continuous monitoring: teams need feedback from the system run-
ning in the field, in order to get measures about systems performance, secu-
rity, reliability, to track the status of microservices, to timely detect issues,
and act consequently. However, this requires the deployment and operation of
(sometimes complex) monitoring tools running alongside the microservices,
which in turn might contribute to the overall energy consumed by the system.
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This study aims to raise awareness on this matter by assessing the impact
on energy consumption and performance overhead of monitoring tools employed
in microservice-based systems. We limit the scope to systems running in Docker
containers since energy is highly dependent on the platform. This helps to sepa-
rate its effect from the main factor (i.e., the tools). Docker was chosen because
it is one of the most popular container-based virtualization solutions [11].

To achieve our goal, we answer the following research questions. RQ1: What
is the impact of using different monitoring tools on energy efficiency of Docker-
based systems? RQ2: What is the impact of using different monitoring tools on
performance of Docker-based systems?

We set up an extensive empirical study in which we select 4 monitoring tools
run alongside a Docker-based system, and we measure energy consumption at
machine level and several performance indicators (CPU, RAM, network, execu-
tion time). We then statistically analyze the results to understand the impact of
the monitoring tools on both aspects under different conditions.

The contribution and results of this study are relevant to i) Docker-based
systems developers, as they offer a better understanding on how to integrate
monitoring tools within their applications in an energy-efficient manner; ii) the
tools’ maintainers, as they highlighting the impact of their monitoring systems
on energy and performance, and showing potential improvements; iii) researchers
working on microservices and DevOps, as they push toward addressing the prob-
lem of an efficient monitoring that has to trade off energy consumption for the
need of gathering as much relevant information as possible to ensure quality.

The full replication package of the study is available at https://github.com/
S2-group/icsoc-2023-energy-perf-monitoring-docker-rep-pkg.

2 Background

As defined by Fowler and Lewis, the microservices architectural style is “an app-
roach for developing a single application as a suite of small services, each run-
ning in its own process and communicating with lightweight mechanisms, often
an HTTP resource API” [1]. Docker [11] is one of the most recurrent technolo-
gies for implementing microservices [4]. It is a lightweight virtualization platform
for packaging software solutions into self-contained and independently-deployed
units (i.e., containers). Among others, with Docker, teams can develop and deploy
their (loosely-coupled) microservices independently from each other, make faster
and more frequent releases, and test their microservices in autononomy.

Being inherently distributed, microservice-based systems require specialized
monitoring tools, such as Netdata1, Prometheus2, etc. Without losing gener-
ality, a monitoring tool is typically composed of one or more DBs for storing
the collected metrics (e.g., the Time Series Database in Prometheus), a dash-
boarding platform for querying the DBs and/or showing the collected metrics to
the user (e.g., Grafana), an alerting subsystem for sending notifications to the

1 https://www.netadata.cloud.
2 https://prometheus.io.

https://github.com/S2-group/icsoc-2023-energy-perf-monitoring-docker-rep-pkg
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user (e.g., the rule-based Alert Manager component in Prometheus), and a set
of monitoring components (e.g., Prometheus exporters) – typically one for
each microservice – that collect metrics about their associated microservice (e.g.,
average CPU usage) and make those metrics available to the DBs. Despite their
undoubted usefulness for the observability of the system, the just-mentioned
monitoring components do not contribute directly to the functionalities of the
system; still, they are deployed together with the microservices being monitored
and compete for the same hardware resources. In this study, we are interested in
quantifying the overhead that the just-mentioned monitoring components pro-
duce in terms of performance and energy consumption of the monitored system.

The collection of performance-related measures (e.g., CPU load, memory
utilization, network requests) is relatively straightforward for Docker-based sys-
tems, primarily thanks to already-existing monitoring components wrapping
Linux utilities such as SAR3. Differently, the measurement of power con-
sumption (and thus energy) requires extra effort and technical skills. Some
well-known tools for monitoring energy are PowerPack (physical measurement),
RAPL (software-based measurement), or PowerAPI (software library). In this
study, we favour accuracy and measure the power consumption at machine-level
using a well-known physical power meter called Watts Up Pro [8].

3 Related Work

To our knowledge, there is no comprehensive study about the energy consump-
tion of monitoring tools in the context of microservices.

Heward et al. [7] look into the performance impact of service monitoring for
web applications. They explore various architecture designs for monitoring the
web traffic. One conclusion is that a colocated proxy used for monitoring is much
more efficient than a proxy located on a different machine. Similar to our study,
this paper assesses the impact of monitoring tools, however it does not consider
their impact on energy efficiency.

Foutse et al. [9] assess the impact of cloud patterns on performance and
energy consumption and provide a series of guidelines for implementing energy-
efficient cloud-based applications. Their results focus around the environmental
impact of microservice-based systems, showing that migration to a microservices
architecture can improve performance, while reducing energy consumption. The
study does not take into account monitoring.

A related study [10] investigates the use of SmartNIC’s, a low-power pro-
cessor, for improving server energy-efficiency without latency loss, in the con-
text of microservices. They propose E1, an execution platform for SmartNIC-
accelerated servers, which, according to the authors, can significantly improve
cluster energy-efficiency up to 3×, with minimal latency cost, for com-
mon microservices. The paper focuses on improving the energy efficiency of
microservice-based systems, however it does not take into account the poten-
tial overhead of monitoring tools.
3 https://linux.die.net/man/1/sar.

https://linux.die.net/man/1/sar
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Santos et al. [14] compare the energy consumption of applications running in
Docker containers to those running bare-metal. The authors demonstrate that
Docker increases the energy consumption even if the system under test is idle.
The effect is caused by the activity of the Docker daemon (dockerd), a service
that permanently runs on the host and orchestrates the containers. While this
paper focuses on the energy footprint of Docker, our study explores how various
monitoring tools running alongside Docker-based systems impact energy.

4 Study Design

4.1 Experimental Subjects: Monitoring Tools

Tools Selection. We searched for open-source monitoring tools on GitHub,
looking at the ones reporting DevOps as topics in their description. The tools
have been selected according to the following requirements:

– Compatible with microservices applications running in Docker containers.
– Do not require integration at the application level (i.e. code instrumentation),

and in general aiming to:
• avoid introducing unnecessary confounding variables, such as communi-

cation overhead due to interaction between additional components,
• avoid increasing the deployment of the integrated applications,
• aid replication of the experiments.

– Capable to collect metrics at container level.

Table 1. Monitoring tools

Monitoring Tool

ELK Stack Website https://www.elastic.co/elastic-stack/

Github https://github.com/elastic/elasticsearch

First and last release* 2/8/2010 and 07/29/2022

Stars on Github* 60,700

Netdata Website https://www.netdata.cloud/

Github https://github.com/netdata/netdata

First and last release* 9/26/2015 and 08/11/2022

Stars on Github* 60,300

Prometheus Website https://prometheus.io/

Github https://github.com/prometheus/prometheus

First and last release* 2/25/2015 and 08/13/2022

Stars on Github* 43,800

Zipkin Website https://zipkin.io/

Github https://github.com/openzipkin/zipkin

First and last release* 6/3/2016 and 1/27/2022

Stars on Github* 15,600

*The date of access for the most recent release and for the number of stars on Github is
8/15/2022.

https://www.elastic.co/elastic-stack/
https://github.com/elastic/elasticsearch
https://www.netdata.cloud/
https://github.com/netdata/netdata
https://prometheus.io/
https://github.com/prometheus/prometheus
https://zipkin.io/
https://github.com/openzipkin/zipkin
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With these requirements, we aim to aid the replicability of the experiments
and facilitate the interpretation of the results avoiding biases. Then, we ranked
the tools in terms of stars and selected the top four, reported in Table 1. Specif-
ically, the ranking included three metric-based tools (ELK Stack, Netdata, and
Prometheus) and one tracing-based tool (Zipkin).
Benchmark System. As part of the setup, we select a well-known Docker-
based microservice application, TrainTicket4 (TTS) [17], and integrated it with
the monitoring tools. TTS is a medium-size benchmark system containing 24
microservices related to business logic, out of 41 in total, implemented in different
languages. It has been previously used in several experimental studies and is
representative for industrial multi-container Docker applications through to its
size, granularity, and variety of microservices [3].
Integration. The integration of TTS with the monitoring tools follows the most
basic configuration and deployment described in the documentation of the tools.
ELK stack is integrated using Metricbeat5, a lightweight shipper for host and
service metrics. Metricbeat is deployed directly on the host and it monitors all
of the deployed Docker containers. Metrics are stored in Elasticsearch and can
be visualised in Kibana - both running in separate Docker containers. Frequency
is the time interval (in seconds) at which metrics are sent to the Elasticsearch
cluster. A snapshot of Metricbeat metrics is generated every second for high
level, 5 s for medium level and 10 s for low level.

Netdata, similar to Metricbeat, has an agent that discovers all available con-
trol groups (cgroups) on the host system and collects their metrics. The collection
frequency has the same progression as for ELK stack (1/5/10 s).

Prometheus is integrated with cAdvisor (Container Advisor)6 to monitor the
running containers. cAdvisor has the same approach as Metricbeat and Netdata
– it gathers container metrics, such as CPU and memory through cgroups. Fre-
quency is configured the same way (1/5/10 s) as the previous two tools.

As for Zipkin7, the integration with the TTS is made with Java Sleuth8. It
is configured using the PercentageBasedSampler, i.e., only a given proportion of
traces are stored. The frequency is changed using probabilistic sampling: only a
configurable percent of the traces are processed and stored. The setting for high
is 100%, for medium 50%, and for low 25%. Further details about the integration
are in the replication package: each integration has its own Compose file defining
the services, networks, and volumes required to run the tools alongside the TTS.

4.2 Goal and Research Questions

The goal of the experiment is expressed via the Goal-Question-Metric app-
roach [2]: to analyze monitoring tools, for the purpose of evaluation, with respect

4 https://github.com/FudanSELab/train-ticket.
5 https://www.elastic.co/beats/metricbeat.
6 https://github.com/google/cadvisor.
7 https://zipkin.io/.
8 https://spring.io/projects/spring-cloud-sleuth.

https://github.com/FudanSELab/train-ticket
https://www.elastic.co/beats/metricbeat
https://github.com/google/cadvisor
https://zipkin.io/
https://spring.io/projects/spring-cloud-sleuth
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to their energy and performance overhead, from the point of view of developers
and tool maintainers, in the context of Docker-based systems. The RQs are:

RQ1: What is the impact of using different monitoring tools on the
energy efficiency of Docker-based systems?

RQ2: What is the impact of using different monitoring tools on the
performance of Docker-based systems?

Several performance indicators are considered pertaining to resource con-
sumption and execution time, which will be analyzed individually. These are:
percentage of CPU utilization while running at user level; load average, com-
puted as the average number of runnable or running tasks (R state), and the
number of tasks in uninterruptible sleep (D state) over the last minute; percent-
age of used memory (RAM); number of input datagrams successfully delivered
per second to IP user-protocols, and total number of input datagrams received
per second, including those received in error; execution time in seconds.

4.3 Experiment Variables

To mitigate the mono-operation bias and to accurately represent the runtime
overhead of the tools, we consider the following independent variables.

Monitoring Tool, five levels: the baseline, where we run the TTS deployed
without any monitoring tool, plus the above-mentioned tools, Elasticsearch, Net-
data, Prometheus, and Zipkin. The tool is deployed along with the TTS.

Frequency: the scrape interval, in the case of tools that collect metrics
(Elasticsearch, Netdata, Prometheus), and the sampling interval, in the case of
the tracing tool (Zipkin). It is treated as a blocking factor with three levels
(high, medium, low). Ratio measures are transformed to ordinal ones based on
the minimum allowed scrape interval and maximum allowed sampling rate among
the tools. Based on this, level “high” corresponds to 1 s for metric collection tools
and 100% sampling rate for tracing tools, level “medium” is 5 s and 50% and
level “low” is 10 s and 25%, respectively.

Workload: the number of virtual users that stress the system during the
test. It is treated as a blocking factor with three levels (high, medium, low). The
mapping to ordinal scale considers the capabilities of the system as follows: level
high corresponds to the highest number of users supported such that the tests
are completed successfully (Table 2).

Deployment: the strategy used for deploying the system. This factor is fixed,
in order to separate its effect from the main factor. The monitoring tools, next
to the TTS are deployed on a single Ubuntu machine using Docker Compose V2
for running the containers on Docker platform.

The dependent variables are: Energy efficiency (total energy consumed
(Joules) by TTS during a load test), and the above-defined performance metrics
(CPU usage, CPU load, RAM usage, Network traffic, Execution time).
The null hypotheses for RQ1 and RQ2 state that a dependent variable does not
significantly differ when using different monitoring tools. The proper hypothesis
tests will be used depending on the data characteristics. Table 2 shows the ratio
values for the co-factors (frequency and workload).
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Table 2. Ratio values corresponding to treatments for every monitoring tool

Tool Frequency Workload

Low Medium High Low Medium High

ELK Stack 10 s 5 s 1 s 10 20 40

Netdata 10 s 5 s 1 s 10 20 40

Prometheus 10 s 5 s 1 s 10 20 40

Zipkin 25% 50% 100% 10 20 40

4.4 Experiment Design

We alternate every possible combination (4 monitoring tools plus the baseline,
3 frequency levels, and 3 workload levels) of all of the levels across all inde-
pendent variables, following a 5× 3× 3 full factorial design. We do not consider
frequency in the case of the baseline treatment, since it does not apply in that
case. This means we only have 3 runs for the baseline, for 3 levels of workload,
leading to 39 trials in total, i.e., (5× 3× 3)-6. We aim to keep the monitoring
tool effect at the core of the experiment, while also considering frequency and
workload as factors that might influence energy efficiency. In order to mitigate
their effect and to ensure an unbiased assignment, we analyze each combination
of the co-factors separately, resulting in 9 different blocks. The results might
differ depending on how energy and performance are affected at runtime when
running the experiment under different frequency and workload conditions.

Each of the 39 runs is repeated 10 times and in randomized execution order,
to mitigate the potential bias caused by the order in which tools are run.

4.5 Experiment Execution

Testbed. The experiment is performed on a machine with a 64-bit Intel(R)
Xeon(R) CPU E3-1231 v3 @ 3.40 GHz octa-core processor, 32 GB RAM, running
Ubuntu Server 18.04 as operating system, which runs TTS and the monitoring
tool. The server is fully dedicated to this experiment to reduce the chances of
external factors contributing to the energy and performance measurements. The
scripts orchestrating and running the experiments and the results of the energy
measurements are run on two further separate machines to avoid bias.
Metrics Collection. For energy measurements collection, we opted for mea-
suring energy at machine level using a physical power meter. Specifically, the
Watts Up Pro power meter is used to collect power measures from the moni-
tored server, in watts (W), at one second intervals, then used to compute energy
(J). For performance measurements, we use SAR, a system utility allowing for
monitoring the resources of a Linux system, again with a one-second interval.
Experiment Execution. Each run has a profiling time of 13.7 min on average,
which may vary depending on the execution time of the load test. We add 3 min
idle time between consecutive runs to guards against carryover effects (consecu-
tive runs influencing each other) [15] and 10 min, for system initialization, which
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leads to 26.7 min to complete one run. We perform 10 runs for every trial (39 tri-
als), resulting in 390 runs in total, executing for 10,413 min (more than 7 d). We
set the execution time for a run to be at least 10 min, taking into account the fre-
quency of 1 s at which Watts Up Pro collects energy measurements. This results
in at least 600 measurements for a run, which allows to accurately compute the
energy efficiency.

We orchestrated the experiment using Experiment Runner9, a Python-based
framework for automatically executing experiments targeting software systems.
For each run, these steps are performed: (i) deploy of TTS along with the chosen
monitoring tool, (ii) start monitoring energy and performance (with Watts Up
Pro and SAR), (iii) interact with the system by triggering a load test script, (iv)
stop monitoring once the load test has completed, (v) stop all processes related
to TTS, or to the monitoring tool running alongside, (vi) clean up the system
by removing all unused local volumes and restarting Docker Engine.
Workload. The load test script was obtained by merging together a set of scripts
generated with K610, an open-source load testing tool. K6 can generate scripts
for performance testing starting from the Swagger/OpenAPI specification of the
REST APIs. We obtain 34 scripts for each of the 34 microservices which are
integrated with Swagger. The scripts are included in the replication package of
the study. Each of the scripts is stressing a different microservice by interacting
with its API. Since the requests propagate through the entire system, the 7
remaining microservices which are not directly tested are also interacted with.

The 34 scripts are merged together into a single load test script which will
be used during a run to stress the entire system. We perform multiple itera-
tions of this script, with several virtual users (10, 20 and 40), to ensure that the
duration of a run is at least 10 min. On average, each user performs the same
amount of work (i.e., 34.5 iterations of the load test script in one run). The
replication package contains: (i) the raw measures, (ii) the scripts for data pro-
cessing and analysis and (iii) the scripts to automate the experiment execution.

5 Results

5.1 Results on Energy Efficiency (RQ1)

Figure 1 reports the energy consumed by the compared tools, with values ranging
from 38,552 to 88,516 J. The coefficient of variation is between 21.3% and 26.8%
and the standard deviation shows that the data is relatively disperse (13,453
globally), which most probably comes from the difference among the frequency-
workload blocks. Considering the mean values (the diamond in the box plot),
there is a visible difference between the baseline (53,755 J) and running a tool
alongside the TTS (54,543 J, 55,046 J, 56,760 J, 60,668 J, respectively for Net-
data, Prometheus, ELK Stack, Zipkin). As expected, the tools have a footprint
on energy, with Netdata being the most energy-efficient tool and Zipkin the

9 https://github.com/S2-group/experiment-runner.
10 https://k6.io/.

https://anonymous.4open.science/r/esec-fse-2023-rep-pkg-6E05/
https://github.com/S2-group/experiment-runner
https://k6.io/
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Fig. 1. Energy efficiency across monitoring tools

least one. Median values (the bars in the plot) are slightly lower but confirm
the ranking. The distributions are similar to each other, with Zipkin having the
highest variance (ranging from 38,552 J to 88,516 J). All the distributions are
highly bimodal, with two separate groups, suggesting an impact of the blocking
factors, frequency and workload. Figure 2 reports the results by block, showing
that Zipkin consumes more than other monitoring tools when the workload is
high.

Fig. 2. Energy efficiency across all frequency and workload level combinations

To statistically analyze the data, we first run Shapiro-Wilks test to check
for normality for each of the 9 blocks. Results are in Table 3, SW column, with
significance level α = 0.05. The p-value for testing the null hypothesis, stating
that the energy sample is drawn from a normal distribution, is lower than 0.05 for
7 blocks out of 9, even after applying various data transformations (logarithmic,
reciprocal, square root and exponential). We conclude that data are mostly not
normally distributed for energy, hence we proceed with non-parametric statistical
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Table 3. Results of Shapiro-Wilk (SW) and Kruskal-Wallis (KW) tests for each fre-
quency (F) and workload (W) block. Bold text denotes a significant difference (α = .05)

Block SW (p-value) KW (p-value) η2 η2 interpretation

F Low, W Low 0.00113 0.00156 0.3 large

F Low, W Medium 0.0939 0.21 0.0413 small

F Low, W High 0.0157 3.77e-06 0.59 large

F Medium, W Low 0.0172 0.00157 0.299 large

F Medium, W Medium 0.019 0.303 0.0189 small

F Medium, W High 0.00228 1.17e-06 0.645 large

F High, W Low 9.25e-05 0.154 0.0594 small

F High, W Medium 0.0826 0.022 0.165 large

F High, W High 9.52e-05 4.58e-07 0.69 large

tests. Specifically, we apply the Kruskal-Wallis test to determine if at least one
of the monitoring tools differ from the others. The p-values are lower than the
α = 0.05 (Table 3, column KW) for 6 out of 9 blokcs. It means that for those
blocks a significant difference in energy efficiency among monitoring tools is
detected. The magnitude of variability in energy efficiency attributable to the
monitoring tools, computed as the eta-squared statistic [12], η2, is generally
large, for all the statistically significant results (Table 3, last two columns).

Table 4. Results of the Wilcoxon test - frequency (F) and workload (W) combination
of treatments (block). Bold text denotes a significant difference (α = .05)

Tool Block p-value Cliff’s δ δ interpretation

ELK stack F Low, W High 0.002 −0.86 large

F Medium, W Low 0.015 −0.72 large

F Medium, W High 0.733e-03 −0.94 large

F High, W High 0.825e-03 −0.96 large

Netdata F High, W High 0.014 −0.68 large

Prometheus F Medium, W Low 0.015 −0.70 large

F High, W High 0.026 −0.60 large

Zipkin F Low, W High 0.458e-03 −1.00 large

F Medium, W Low 0.009 −0.84 large

F Medium, W High 0.458e-03 −1.00 large

F High, W High 0.825e-03 −1.00 large
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Table 5. Dunn test (α = 0.05) per block. grey: not significant, green: significant

As a significant difference between the tools exists, we perform a pairwise
comparison between each monitoring tool and the baseline, by applying the
Wilcoxon test across all blocks with Benjamini-Hochberg (B-H) correction for
multiple-comparison protection. There is significant difference for every tool for
at least one block (Table 4). The Cliff’s delta for those blocks shows a large effect
according to the interpretation by Romano [13]. Also, Table 5 reports the Dunn’s
test comparing each tool with each other. Both these tests confirm that Zipkin
is the most-consuming tool, followed by ELK stack.

Result 1 - Monitoring tools significantly impact the energy efficiency of
Docker-based systems, under several (6 out of 9) frequency and workload
conditions. Not all tools have the same impact; Zipkin has the largest neg-
ative impact. A high workload contributes markedly to high consumption
of all the tools, and exacerbates the difference between the tools.

5.2 Results on Performance (RQ2)

Figure 3 reports performance. The replication package contains Tables with sum-
mary statistics of these results. The CPU usage percentage is 52.4% on average
globally, with the lowest recorded values for ELK stack (49.0%) and the highest
for Zipkin (57.6%). Apart from Zipkin, there seems to be a negligible differ-
ence between the baseline and the tools. For the CPU load average, Zipkin still
shows the highest value, 18.4, while Netdata and Prometheus show the lower
ones (16.6). RAM usage has a very low standard deviation. The mean is 70.7%,
with the minimum average value for the baseline (65.1%) and the highest for
ELK stack (99.2%). This means that ELK stack has a very high memory foot-
print, keeping the RAM usage close to the maximum capacity throughout the
execution of the load test. This phenomenon might be an indication of the high
energy consumption of ELK stack, where we obtained a significant difference for
4 out of 9 blocks (Table 4). Also, Zipkin tends to be more memory- and CPU-
intensive than other monitoring tools like Netdata and Prometheus, and also
in this case Zipking was shown to consume more energy than the baseline for
4 out of 9 blocks. In terms of execution time, looking at the mean values, it is
not highly impacted by tools such as Netdata and Prometheus. ELK stack and
Zipkin however have the highest execution time on average. A run has a duration
of 13.7 min on average, with the minimum being 10 min (for Prometheus) and a
maximum of 18 min (for Zipkin).
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Fig. 3. Dependent variables across monitoring tools

Table 6. Results of the Shapiro-Wilk test for each frequency (F) and workload (W)
block. Bold text denotes a significant difference (α = .05)

Block CPU Memory Network Load Exec. time

F Low, W Low 0.000412 1.07e-05 0.0015 0.178 2.81e-05

F Low, W Medium 0.000864 9.09e-06 0.298 3.88e-06 0.585

F Low, W High 0.014 1.95e-05 0.323 0.575 0.0807

F Medium, W Low 0.435 1.02e-05 1.94e-05 0.212 7.77e-05

F Medium, W Medium 0.00248 1.01e-05 0.114 3.68e-07 0.00395

F Medium, W High 0.388 8.72e-05 0.533 0.639 0.59

F High, W Low 0.693 5.94e-06 0.00158 0.657 0.000204

F High, W Medium 0.0466 1.71e-05 0.066 0.000453 0.518

F High, W High 0.183 5.43e-05 0.0041 0.111 0.0317

Result 2 - Monitoring tools like Zipkin (for CPU) and ELK Stack (for
RAM) increase the resources’ usage and affect the execution times more
than other tools. The same result was observed with total energy con-
sumed.
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The mean network traffic is similar for all the tools. This is expected, since the
same amount of traffic is likely generated while running the load test. The distri-
butions in all the cases except for RAM are bimodal, highlighting the variability
among the different blocks.

The Shapiro-Wilk normality tests (Table 6) show that in most cases data are
not normally distributed for any of the dependent variables.

As before, we run the Kruskal-Wallis test for each variables to detect a pos-
sible difference between the monitoring tools on performance. For CPU usage,
CPU load, and RAM usage, the obtained p-values are significant forall the blocks.
The magnitude of the difference attributable to the tool (eta-squared statistic)
is large in 9 out 9, 2 out of 9, and 9 out 9 cases for CPU usage, CPU load, and
RAM usage, respectively. For network traffic and execution time, the difference
is significant only in 2 and 4 cases, respectively. The Tables per variable with
KW p-values and η2 results are in the replication package.

The Wilcoxon test across all blocks, with the B-H correction, compares each
tool against the baseline. Results are hereafter summarized:

– CPU Usage: In general, for ELK stack and Zipkin there is a significant
impact of monitoring tools on CPU usage. The trend is more pronounced
under a high workload. The p-values for 3 blocks allow to reject the null
hypothesis that the median difference between the baseline and ELK stack
is zero. The same stands for 6 blocks regarding Zipkin. This confirms the
previous observations. Also, the Cliff’s delta reveal always a large effect when
the p-values are significant.

– CPU Load: For Zipkin and Netdata there is at least one block where the
impact on CPU load is significant. This means that these tools can influence
CPU load under specific frequency and workload conditions.

– RAM Usage: Except for Netdata, there is statistical significance for every
tool, for at least one block. The Cliff’s delta effect size is large for all these
blocks but one (on Prometheus). The results for ELK stack further confirm
the previous observations that ELK stack has a very high memory footprint
(under all workload-frequency conditions, RAM usage is close to 100%).

– Network Traffic: In general, there is no statistical significance for network
traffic (only in one block for Netdata, Prometheus and Zipkin the difference
is significant). This is expected, as running a monitoring tool should not
influence the network traffic generated by running the load test.

– Execution Time: In case of ELK stack and Zipkin there is statistical signifi-
cance and Cliff’s delta estimates show large effect size. Again, a high workload
increases the impact and exacerbates the differences: the longest execution
time is for Zipkin under the high workload-high frequency configuration (more
details in the replication package plots). For Netdata and Prometheus, there
are no statistically significant results.
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Result 3 - Monitoring tools influence the CPU usage, CPU load, RAM
usage and execution time, under specific frequency and workload condi-
tions. Zipkin and ELK stack have the largest impact, exacerbated when
running under high workload conditions.

Table 7. Correlation coefficients

CPU usage CPU load RAM usage Execution time Network

Pearson 0.859 0.899 0.187 0.867 0.961

Spearman 0.829 0.851 0.290 0.796 0.954

Finally, we analyze each dependent variable in relation to energy efficiency
(Table 7). CPU usage, load average and execution time are strongly correlated
with energy efficiency. Although this does not imply causation, their reduction
can potentially improve energy efficiency. However, there is a relatively small
correlation between RAM usage and energy efficiency. This also explains why
ELK stack is not worse than Zipkin in terms of energy consumption, despite its
intensive use of RAM. The correlation between network traffic and energy effi-
ciency is also high, primarily due to the presence of 3 groups each corresponding
to a level of workload – high network traffic leads to the highest energy values,
while low network traffic leads to the lowest values.

Result 4 - CPU usage, CPU load average and execution time are strongly
correlated with energy efficiency.

6 Threats to Validity

Internal Validity. To mitigate the history threat, where events occurring at the
same time a treatment is applied could produce the effect, we repeat each run
10 times. Also, to avoid order effects, execution order is randomized. To avoid
carryover effects (i.e., consecutive treatments influencing each other), we stop
the running systems and wait for 3 min before starting the next run. We also
alternate the baseline with the other treatments, as a best practice to be able to
verify any noticeable changes in absence of intervention. We address the ambigu-
ous temporal precedence threat by ensuring replication of the exact sequence of
independent variables manipulation, thanks to the Experiment Runner tool.
External Validity. We select well-known monitoring tools for microservices, con-
sidering their popularity on GitHub. Clearly, different tools might impact energy
and performance differently. To mitigate this risk, we applied a minimalistic
setup, following the documentation to avoid introducing unnecessary confound-
ing variables (due to additional components, for instance). We compared the
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tools on a widely used microservice benchmark application, Train Ticket; though,
using another application would lead to different results. Future replications of
this experiment will help in mitigating this potential source of bias.
Construct Validity. We are confident about the integration of the monitoring
tools, as we carefully tested each of them running alongside the system before
running the experiment. The implementation is publicly available. Also, hard-
ware power meters, like the one we used, are known to have high accuracy and
do not influence the measured system [6].

7 Conclusions and Future Work

In this study we conducted an empirical assessment of the energy and per-
formance overhead of monitoring tools on Docker-based systems. We obtained
significant results in terms of energy and performance (CPU usage, CPU load,
RAM usage, network traffic and execution time), under specific frequency and
workload conditions. Not all the tools impact energy efficiency and performance
in the same way, but we observed a high energy consumption and a high CPU,
RAM and execution time for the same tools. The correlation analysis confirms
the association for CPU and execution time, but not for memory, hence the lat-
ter is likely to have a smaller impact on energy. For a more granular analysis,
to be able to detect energy hotspots in monitoring tools, we plan to deploy a
software power meter in a future iteration, such as SmartWatts11, that measures
energy at container level.
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