
MicroART: A Software Architecture Recovery Tool
for Maintaining Microservice-based Systems

Giona Granchelli∗, Mario Cardarelli∗, Paolo Di Francesco†,
Ivano Malavolta‡, Ludovico Iovino†, Amleto Di Salle∗

∗University of L’Aquila, L’Aquila, Italy
{giona.granchelli | mario.cardarelli}@student.univaq.it, amleto.disalle@univaq.it

†Gran Sasso Science Institute, L’Aquila, Italy - {paolo.difrancesco | ludovico.iovino}@gssi.it
‡Vrije Universiteit Amsterdam, The Netherlands - i.malavolta@vu.nl

Abstract—Microservice-based systems are characterised by a
multitude of small services, each running in its own process and
communicating with lightweight mechanisms. The microservice
architectural style strongly encourages high decoupling among
microservices in order to ease their independent deployment,
operation, and maintenance. However, there are situations in
which having a global overview of the system is fundamental.
In this paper we present the first prototype of our Architecture
Recovery Tool for microservice-based systems called MicroART.
MicroART following Model-Driven Engineering principles, is
able to generate models of the software architecture of a
microservice-based system, that can be managed by software
architects for multiple purposes.

Index Terms—Microservices, Architecture Recovery, MDE.
I. INTRODUCTION

Many companies are adopting microservice architectures
(MSAs) for their applications on the basis of all the benefits
they can provide, e.g. technology heterogeneity, resilience,
scaling, ease of deployment, composability [7]. Despite some
general architecture recovery approaches already exist [8],
in the microservices area little investigation is being per-
formed in the field. This is confirmed by a recently published
mapping study on architecting microservices [3], which has
reported limited research focus on the activities related to
MSA recovery. Since microservices can dynamically change
their status at runtime (e.g., IP address) for multiple reasons
(e.g., autoscaling, failures, upgrades), it is common in these
architectures to adopt service discovery mechanisms in order
to keep the system dependencies loosely coupled. Service
discovery services are used to allow each microservice in the
network to dynamically discover the other active services. Al-
though service discovery mechanisms simplify many aspects
of microservice communications, from the architecture recov-
ery point of view they create additional challenges as they
mask the real dependencies existing among microservices.
This creates several difficulties when trying to understand the
details and the dependencies of the system.

In this paper we present MicroART, a microservice ar-
chitecture recovery tool1 capable of recovering the system
physical and logical architectures and generate model-based
representations. MicroART is capable of generating to differ-
ent architectural model, respectively referred as physical and

1Available for download at: https://github.com/microart/microART-Tool

logical architecture models. The physical architecture model
is the abstraction of the system recovered by the architecture
recovery activity. The architectural model in which service
discovery services are resolved is the logical architecture
model. Moreover by service discovery resolution we mean
the process of identifying the real targeted microservice of
a communication as if the service discovery was not acting
as a proxy of the communication. Both the physical and the
logical architectural model are snapshots in time of the system.

Of the main features of MicroART is its ability to identify
and remove service discovery services, with the main aim
of unveiling the real dependencies between microservices
from the development perspective. MicroART has been real-
ized using Model-Driven Engineering tools and development
principles [2]. We have designed a minimal domain specific
language (DSL), based on EMF2, that can be used to describe
microservice architectures. Moreover, the physical and logical
models extractions are respectively obtained by using text-
to-model and a model-to-model transformations. The service
discovery resolution can be seen as model refactoring, where
the models can be managed by using a graphical editor, built
on the top of EuGENia3.

The rest of the paper is organized as follows. Section II
presents the overview of the MicroART approach. Section
III discusses the details of the MicroART tool. Section IV
describes the uses and potential impact of the tool. Section V
reports the related work. Section VI discuss the conclusions
and future work.

II. THE MICROART APPROACH

An overview of the activities, tools, and artefacts involved in
the activities performed by MicroART is depicted in Figure 1.
MicroART recovers the architecture of a microservice-based
system by applying three different phases.
Physical Architecture Recovery. This phase is responsible to
perform all the operations needed to recover the model of the
physical architecture of the system.
Service Discovery Identification. In this phase the software
architect can access and reason on the generated model of
the physical architecture, where identify and mark the service

2https://eclipse.org/modeling/emf
3www.eclipse.org/epsilon/doc/eugenia

https://github.com/microart/microART-Tool
https://eclipse.org/modeling/emf
www.eclipse.org/epsilon/doc/eugenia


discovery services, and then update the model with this infor-
mation. By resolving service discovery services, MicroART is
able to understand dependencies among services. The inter-
action with the architect is required in order to guarantee the
correctness of the service discovery identification.
Logical Architecture Recovery. In this phase MicroART
takes as input the updated model and uses the information
provided by the software architect to resolve service discovery
services and generate the logical model of the architecture. The
software architect can use this model for several purposes, for
instance: documentation, architectural analysis, or transform it
into another formalism.

System	 Specification

MicroArt

Physical Architecture	
Recovery

Source	Code

Service	Discovery
Identification

Augmented
Physical Model

Logical Architecture	
Recovery

Logical Model

Microservices

Physical Model

Fig. 1. Architecture recovery activities, tools and artefacts

The graphical interface of MicroART has been realized
by using Epsilon and EuGENia, a model-driven tool that
automatically generates an interactive modeling editor for
manipulating the models in a user-friendly manner.

III. REALIZING THE MICROART TOOL

MicroART is composed of four main components, each one
addressing a separate task, as highlighted in Figure 2.

The first component is the GitHub Analyzer, which takes
as input the web URL of the system’s source code repository,
it clones locally the repository and extracts the information
related to: (i) the system name and description, and (ii) the
developers which have contributed to the repository over
the software lifetime. The second component is the Docker

Fig. 2. MicroART inner structure

Analyzer that dynamically queries the Docker runtime envi-
ronment and gathers the network interface and the IP address
of each services. This information is used to map the services
information gathered from the GitHub Analyzer with the
respective network identification, otherwise we cannot access
to this specific information.

The Log Analyzer is responsible for analyzing the log
files that are generated dynamically by a monitoring tool.
At the moment, MicroART relies on the log generated by
TcpDump4, an open-source tool for capturing network traffic
and for packets analysis. TcpDump is used to register and
write log files of the communication requests collected during
the system execution. Using these logs, the Log Analyzer can
track the communications among services.

The Model Log Analyzer takes as input the model of
the physical architecture upon which the service discovery
services have been identified, and uses this information to
properly filter the log files. From this analysis, the model of
the logical architecture of the system is generated.

A first assessment of the MicroART tool has been performed
using an open-source benchmark system called AcmeAir5,
a microservice-based implementation of a fictitious airline
website. AcmeAir uses Docker container technology, and it
contains six microservices: Main, Authentication, Customer,
Booking, Flights, Nginx, which are all developed in JavaScript
and running in a Node.js runtime environment. In AcmeAir,
microservices are not aware of each other in the network, but
they communicate with the service Nginx, which acts as a
service discovery service. In the following sections we present
each phase of the MicroART tool in detail and we discuss how
it has been applied on the AcmeAir benchmark system.

A. Physical Architecture Recovery

In order to start the recovering of the physical architecture,
MicroART needs the following inputs: (i) the GitHub reposi-
tory URL of the system, (ii) the log files of the communication
among microservices, and (iii) Docker runtime environment
information (i.e., containers identifiers, the IP addresses and
the network interface used by the service).

The GitHub Analyzer uses the url in order to clone the sys-
tem’s repository and parse the content. The GitHub Analyzer
searches for the following information: (i) a Docker-compose
file specifying the system components interactions (e.g., con-
tainer name and build-path), and (ii) a Docker-file for each
microservice from which specific listening ports and exposed
ports are retrieved. In addition the GitHub Analyzer retrieves
the list of all the developers that have contributed with at
least a commit operation to the repository. The information
discussed above is retrieved statically, i.e., without running
the system, but it is not enough for generating the physical
architecture of the system. The information collected with the
GitHub Analyzer is sent to the Docker Analyzer which will
query the Docker environment at runtime in order to retrieve

4http://www.tcpdump.org/
5https://github.com/acmeair/acmeair-nodejs

http://www.tcpdump.org/
https://github.com/acmeair/acmeair-nodejs


Fig. 3. AcmeAir physical architecture model generated by MicroART
(extract)

information related to the IP address of every microservice and
the network interface used by each microservice. This addi-
tional data is fundamental to accomplish the last task, because
MicroART needs to know how the microservices interact with
each other. One of the ways to retrieve this information is to
monitor the system dynamically in its running environment
and to save microservice communications into log files. By
joining the information gathered from the static analysis (i.e.
repository analysis) and the dynamic analysis (i.e. runtime
analysis) MicroART can generate the model of the physical
architecture. Figure 3 shows the physical architecture model
of the AcmeAir benchmark system recovered by MicroART.
Ten elements have been extracted: six microservices and four
databases. Each service has its own set of interfaces which is
used for connecting to the others services. Each interface rep-
resents either an incoming or an outgoing communication and
each communication link represents a resource dependency.

B. Service Discovery Identification

In the second phase towards recovering the logical ar-
chitecture of a microservice-based system, a software archi-
tect manual interaction is required. By using the developed
graphical editor, the software architect is able to visualize
the model generated by MicroART and identify and mark
service discovery services. Figure 3 reports a screenshot of the
physical architecture rendered in our Eclipse-based editor. The
service discovery service identified by the software architect
has been highlighted in red. As expected, the service discovery
service is receiving and forwarding all the communications to
and from most microservices.

C. Logical Architecture Recovery

MicroART performs a new log analysis on the augmented
physical model for extracting the logical architecture. At
this point MicroART knows all the communications among
microservices and the identified service discovery service. The
procedure performed in this phase is similar to the physical

recovery phase, except for the fact that the communications in
which the service discovery service are involved are analyzed
differently. Every link to the service discovery service is traced
to the real target of the communication. At this point, the
physical model is transformed in the logical model by: (i)
removing all the previous links among microservices and
replacing them with the newly identified connections, and
(ii) removing all service discovery services identified in the
physical model. In order to connect the service consumer to
the real service provider, MicroART checks the log of each
registered communication. Each communication starts with a
client requesting a resource and routing this resource to the
service discovery, which in turn forwards the request to the
microservice providing the resource. In this phase, MicroART
knows which one is the service discovery and can realize a
mapping of microservices and communications traces, from
the beginning until the end, and for each communication, a
link is created to the connected microservices.

Figure 4 reports a screenshot of the AcmeAir logical
architecture model, where the service discovery has been
removed and the number of dependencies have significantly
been reduced. Indeed, Main does not need any resource from
the other services, except for the rendering of its web page.
Similarly, Flight relies only on its own database, and does not
need to communicate with other components. From Figure 4,
we can notice that some microservices (i.e., Authentication,
Customer and Booking) are dependent from each other. The
software architect can use the resulting logical architecture for
many purposes, like change impact analysis at the architectural
level, deep understanding of the overall architecture of the
system, etc.

Fig. 4. AcmeAir logical architecture model generated by MicroART

If we compare the AcmeAir physical (Fig. 3) and logical
(Fig. 4) architecture models, we can immediately notice how
the latter is easier to understand and analyze. Indeed, while in
the physical model the microservices are all attached to the
service discovery, in the logical architecture the microservices



are connected directly to each other. The reason why service
discovery services must be identified and removed is because
they mask the flow of operation for the communications.

IV. USES AND POTENTIAL IMPACT

The intended users of MicroART are public or private
companies that are interested in automatically recovering the
physical and logical architectures of their microservice-based
systems. MicroART is a semi-automatic tool for architecture
recovery where the only manual software architect interaction
is the identification of the service discovery services.

At the moment, the MicroART prototype depends on
GitHub and Docker, and its applicability is restricted to
projects based on these technologies. The main benefit in the
adoption of MicroART is the implementation of a model-
based representation of the microservices architecture. The
models generated by MicroART can be graphically rendered,
and thus be used for many purposes, such as documentation,
architectural analysis, architectural reasoning or verification
between the deployed architecture and the designed one. Since
this tool has been built around microservices systems needs
and it considers the famous approach you build, you run,
also the developed DSL considers the concepts of teams and
developers, being the microservice approach organized with
cross-functional teams around services [5]. Indeed the tool
graphically represents developers and teams, allowing software
architects to better understand the team responsibilities and
the mapping of microservices with the respective developers.
Additionally, due to the fact that microservice architectures are
usually composed by numerous services, and the interactions
among them are frequent, the number of connections is gener-
ally significant. A graphic rendering of the architecture could
reveal important information, as for instance the decentralized
data management and decentralized governance [5], which
may lead to the proliferation of a high number of microservices
within a single system.

V. RELATED WORK

A SOA-oriented architecture recovery process called QAR
(QUE-es Architecture Recovery) is presented in [1]. Similarly
to MicroART is based on both a static and dynamic phases
but it is based on a set of tools, relying on UML to un-
derstand the system details. X-Trace presented in [4], is a
tracing framework for reconstructing a comprehensive view of
services behaviour. This tool monitors a distributed system and
tries to extract the element behaviours starting from a network
interface. Despite X-Trace monitors the network, X-Trace
doesn’t rely on models but it relies on metadata, and doesn’t
produce a logical architecture. In [6] a comparative analysis of
software architecture recovery techniques is presented. They
argue that most accurate technique are ARC and ACDC.
ARC relies on a program’s semantics to perform recovery
and represents a software system as a set of documents.
Differently, ACDC works on software written in C language,
but is not applicable to microservice architectures, because is

a clustering technique for architecture recovery that relies on
monolith system.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented MicroART, a prototypical tool
for architecture recovery of microservice-based systems. Mi-
croART first generates a physical architectural model of the
system, then it refines it to a logical architecture model.
Both generated models can be used by software architects for
many purposes, for example architectural reasoning, analysis,
or documentation. In the future, we are planning to extend
MicroART to support other container-based engines (e.g.,
Vagrant), to support the integration with additional logging
and rendering tools, and to investigate the application of
MicroART to other microservice technologies (e.g., AWS
Lambda serverless Function-as-a-Service). We will apply Mi-
croART on additional open-source microservice-based systems
in order to refine and improve its capabilities.

VII. ACKNOWLEDGMENT

This research has been supported by the European Union’s
H2020 Programme under grant agreement number 644178
(project CHOReVOLUTION - Automated Synthesis of Dy-
namic and Secured Choreographies for the Future Internet),
and by the Ministry of Economy and Finance, Cipe resolution
n. 135/2012 (project INCIPICT - INnovating CIty Planning
through Information and Communication Technologies).

REFERENCES

[1] F. Cuadrado, B. Garcı́a, J. C. Dueñas, and H. A. Parada. A
case study on software evolution towards service-oriented
architecture. In Advanced Information Networking and
Applications-Workshops, 2008. AINAW 2008. 22nd Inter-
national Conference on, pages 1399–1404. IEEE, 2008.

[2] A. R. da Silva. Model-driven engineering: A survey
supported by the unified conceptual model. Computer
Languages, Systems and Structures, 43:139 – 155, 2015.

[3] P. Di Francesco, P. Lago, and I. Malavolta. Research on
Architecting Microservices: Trends, Focus, and Potential
for Industrial Adoption. IEEE International Conference
on Software Architecture (ICSA), to appear, 2017.

[4] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica. X-trace: A pervasive network tracing framework. In
Proceedings of the 4th USENIX conference on Networked
systems design & implementation, pages 20–20, 2007.

[5] M. Fowler and J. Lewis. Microservices a definition of
this new architectural term. URL: http://martinfowler.com/
articles/microservices.html, 2014.

[6] J. Garcia, I. Ivkovic, and N. Medvidovic. A comparative
analysis of software architecture recovery techniques. In
Automated Software Engineering (ASE), IEEE/ACM 28th
International Conference on, pages 486–496. IEEE, 2013.

[7] S. Newman. Building Microservices. O’Reilly Media,
Inc., 2015.

[8] L. O’Brien, C. Stoermer, and C. Verhoef. Software
architecture reconstruction: Practice needs and current
approaches. Technical report, DTIC Document, 2002.



APPENDIX

MicroART is a prototypical research tool available for down-
load at: https://github.com/microart/microART-Tool. Even if
the tool is still in a prototypal stage and continuously evolving,
we managed to test and validate the approach on a system
called AcmeAir, an publicly available open-source benchmark-
ing system. We will extend the evaluation to other systems
soon, hopefully in collaboration with industrial partners.
The demonstration will be carried out using two projectors. On
one side, labeled with A , we will show every step required to
recover the architecture from a GitHub repository, on the other
side (labeled with B ) we will show the models generated by
MicroART in a step-by-step fashion.

In the following we provide the main steps of the tool demo:
1. Introduction to MicroART

A short introduction about the tool will be provided in
order to show its main components and the architecture
recovery process.

2. Configuration setup
The Acme Air benchmark system will be run on the top
of the Docker platform environment in order to give an
idea about its main services and features.

3. Running MicroART
MicroART is composed of two Eclipse instances. One
instance deals with the steps of architecture recovery, the
other instance hosts the plugins responsible for graphically
rendering the models of the recovered architecture.
The architecture recovery will start by providing as
input the GitHub URL of the Acme Air repository.
MicroART will automatically clone the repository and
generate an initial version of the architecture of the system.

4. Monitoring and simulation
A monitoring tool for logging the requests among microser-
vices, called TCPDump, will be launched.
A brief usage scenario of the Acme Air system will
be performed in order to generate requests among
microservices. In the meanwhile, TCPDump will store
those requests into specific log files.

5. Physical Architecture Recovery
MicroART will generate the architecture model in the
format presented in section III and the model will be
rendered in B .

6. Service Discovery Identification
Upon the model rendered in B , the service discovery
service will be identified, and the model will be updated
accordingly.

7. Logical Architecture Recovery
Using the architecture model generated in step 5 and
the information provided on the service discovery in

step 6, MicroART will generate the logical model of the
architecture. The model will be rendered in B .

8. Future work
Currently, MicroART is a prototype implementation
and we are planning to extend MicroART to support
other container-based engines alternative to Docker(e.g.,
Vagrant), and the integration with additional logging and
rendering tools. Further application of MicroART will be
performed on other microservice-based systems in order
to refine and improve its capabilities.

9. References
Finally, the references to MicroART will be shown to
allow the audience to know where they can download the
tool and also find more details about its implementation
and benchmarks.

Depending on the time availability, some of the aforemen-
tioned steps may be shortened or deleted.

https://github.com/microart/microART-Tool

