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ABSTRACT
Context. WebAssembly was created as an alternative to JavaScript
for developing heavy loading web applications. Since JavaScript is
known to have long execution times. A lot of research is already
performed to compare the run-time performance of WebAssem-
bly against that of JavaScript. However, little research is available
that compares the energy consumption of WebAssembly versus
JavaScript.
Goal. With this study we aim to identify the correlation between the
energy consumption and the use of WebAssembly versus JavaScript.
This will aid developers in deciding which method matches the
needs of their project best in terms of energy efficiency.
Method. The subjects of the experiment are WebAssembly and
JavaScript. During the experiment two research questions are de-
fined. For the first research question the programming language
is the independent variable. For the second research question the
web browser is the independent variable. For both research ques-
tions is the energy consumption of the Android device in Joules
the dependent variable.
Results. We can confirm that the energy consumption of WebAssem-
bly is less than that of JavaScript. The browser also plays a role
since the energy consumption of Firefox is significantly smaller
than that of Chrome for both WebAssembly and JavaScript.
Conclusions. This study provides evidence that using WebAssembly
for the development of web applications can reduce the energy
consumption and thus improve the battery life of a user’s Android
device. Developers can use this information when choosing a pro-
gramming language to develop a web application. Moreover, using
Firefox over Chrome does also reduce the energy consumption of
web applications developed both withWebAssembly and JavaScript.
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1 INTRODUCTION
JavaScript is one of the most used programming language sup-
ported by the web. However, interpreted JavaScript is known to
run applications much slower than compiled Android machine
code, from hereon referred to as native code [1] [2]. Problems arise
when adopting high performance computing, like machine learning
and 3D visualizations, on the web [3]. JavaScript is not equipped
to perform such high performance computing functions, which
leads to long execution times. In an effort to tackle these problems,
a number of major web browser providers like Apple, Microsoft
and Mozilla, decided to collaborate and join forces. This led to the
creation of a new type of low-level code, namely WebAssembly1.
WebAssembly is a standard that defines low-level binary code. The
standard is designed to be as small as possible and to compile effi-
ciently. It is language independent, meaning that it supports several
programming language by using a compiler like Emscripten [4].

Various experiments have been conducted to analyse the run-
time performance ofWebAssembly by either comparingWebAssem-
bly to the application’s native code, or in comparisonwith JavaScript [2,
5–8]. Most of these papers use the execution time of benchmark
functions to measure the run-time performance. However, little is
known about the impact on energy consumption of WebAssembly.
Oliveira et al. conducted an experiment on the run-time perfor-
mance of WebAssembly where the battery consumption was mea-
sured in addition to the execution time [6]. Based on the obtained
results, the authors concluded that using WebAssembly so as to
improve the run-time performance of JavaScript reduces the battery
consumption by 39%.

According to the book of Sasu Tarkoma et al., a crucial aspect
of consumer satisfaction of smartphones is the battery life [9].
Software is often equipped with suboptimal functions which leads
to inefficient use of the hardware. Since there is little knowledge
about the impact of the use of WebAssembly on energy consump-
tion, this research aims to examine the energy consumption using
WebAssembly in comparison with JavaScript.

The goal of this paper is to identify the correlation between the
energy consumption and the use of WebAssembly versus JavaScript.
This will aid developers in deciding which of these two languages
matches the needs of their project best in terms of energy efficiency.

2 RELATEDWORK
Studies on the run-time performance of WebAssembly vs
native/Java- Script code. The motivation behind the study of
Herrera et al. [5] was the increase in power of hardware devices.
They carried out the experiments on the Ostrich benchmark set,

1https://webassembly.github.io/spec/core/
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which is a collection of numerical programs representing the nu-
merical dwarf categories. The goal was to evaluate the current state
of portable and web-based numerical computing. In their experi-
ment, they compared the run-time performance of WebAssembly to
the run-time performance of JavaScript. The results of their study
reveal that the run-time performance of using WebAssembly is
better than the run-time performance of using only the numeric
benchmarks. In this paper, the Ostrich benchmark set is used as
well, however, the focus lies solely on Android devices, whereas
the focus of the experiment by Herrera et al. is on various types of
devices. Thus, mobile phones are being compared to desktops, and
browsers are being compared as well. Another difference is that
the paper of Herrera et al. focuses on the run-time performance dif-
ferences between WebAssembly and JavaScript, whereas this study
focuses on the energy efficiency of WebAssembly and JavaScript.

The goal of Jangda et al. [2] is to analyze the run-time perfor-
mance of WebAssembly compared to the native code, for which
a SPEC CPU benchmark suite is used. This benchmark suite in-
cludes several applications that fall under the intended use cases
of WebAssembly. Thus, where the study of Herrera et al. [5] and
this study focuses on JavaScript, the study of Jangda et al. focuses
on native code in general. Besides this, the results of the study of
Jangda et al. are solely focused on the run-time performance of We-
bAssembly and native code in web browsers, specifically Chrome
and Firefox. From this study follows that applications compiled to
WebAssembly run slower than applications compiled to native code
in both Firefox and Chrome.
Studies on the runtime efficiency ofWebAssembly. Similar to
the experiment of Herrera et al. [5], two other related works use the
Ostrich benchmark set. Firstly, the experiment of Oliveira et al. [6],
assesses the use of WebAssembly as a strategy to improve the run-
time performance of JavaScript applications in an IoT environment.
From this experiment follows that JavaScript run-time performance
could be improved in terms of execution time, memory usage, and
battery consumption is reduced when using WebAssembly. Their
main objective is to assess if there is a performance gain and how
much it impacts battery-powered devices. Specifically, they focus
on the IoT environment. Whereas, in this paper, we analyze the
impact on the energy consumption of web applications on Android
mobile devices. Additionally, compared to their study, we analyze
how the choice of web browsers impacts the energy efficiency of
JavaScript and WebAssembly.

Secondly, the experiment of Alamari and Chow [10] follows from
the new run-time performance capabilities in the browser. These
being the possibility to build universal applications that run on
every machine that has a web browser installed on it. They propose
a design to build web applications that take advantage of these new
run-time performance capabilities. Both of these experiments differ
from this paper, along the lines of its goal. The goal of these experi-
ments is to improve the run-time performance of web applications,
whereas the goal of the experiment in this paper is to analyze the
energy efficiency of WebAssembly and JavaScript.

An experiment done by Reiser and Bläser [7] does not make
use of the Ostrich benchmark set, but this experiment is focused
on runtimes. Its goal is faster and more predictable runtimes for
performance-critical web code. In order to achieve this goal, Reiser

and Bläser create a cross-compiler that translates JavaScript/Type-
Script to WebAssembly. From this follows a compute-intense web
code that is faster and has a reduced runtime.

Another experiment that focuses on runtimes is executed by
Lehmann and Pradel [11]. They presentWasabi, a framework which
is created to dynamically analyze WebAssembly. Wasabi is based on
binary instrumentation. This binary instrumentation inserts calls to
analysis functions that are written in JavaScript into a WebAssem-
bly binary. This framework demands a runtime overhead that is
reasonable for dynamic analysis, and it makes implementation of
various dynamic analyses straightforward.
The run-time performance of JavaScript. So far, most related
work that is discussed focuses on the combination of WebAssembly
and JavaScript. However, there are also studies that focus only on
the run-time performance of JavaScript.

Sandhu et al. [8] compare JavaScript to native languages by focus-
ing on run-time performance and choice of optimal sparse matrix
storage format for sequential parse matrix-vector multiplication
(SpMV). SpMv is a kernel that is considered critical regarding the
run-time performance of data-intensive applications. From this ex-
periment follows that the best performing browser demonstrated a
slowdown of only 1.2x to 3.9x, that double-precision SpMV is more
efficient than single-precision, and that the optimal storage format
choices are very different for C as compared to JavaScript, and
even quite different between the two browsers. The main difference
between this experiment and the experiment of this paper, is the
use of SpMv to compare the run-time performance of JavaScript
with the run-time performance of native languages.

An experiment done by Miettinen and Nurminen [12] analyzes
the energy consumption of JavaScript based web applications on
mobile phones. From this experiment follows that choosing a proper
library can save up energy when implementing the same function-
ality. Thus, there are relevant differences when implementing a
JavaScript based application when focusing on energy efficiency.
Where the experiment of Miettinen and Nurminen focuses solely
on the energy efficiency of JavaScript, the experiment of this paper
analyzes the differences in the energy efficiency of both JavaScript
and WebAssembly.
Energy consumption of Google Chrome vs Mozilla Firefox.
Macedo et al. [13] present a study on the energy consumption of
two popular browsers: Google Chrome and Mozilla Firefox. Their
goal was to measure the energy consumption of the browsers to
understand which browser is the most appropriate to be used if
energy consumption is of concern to the user. In particular, they
measure and analyze the energy consumed by the DRAM and CPU
of Chrome and Firefox on different web applications. In general,
they conclude that Chrome is a more energy-efficient browser than
Firefox, but Firefox is more consistent in terms of energy efficiency.

3 STUDY DESIGN
The experiment is carried out according to known empirical soft-
ware engineering guidelines [14–16] . Below we present the design
of the experiment. For further details, a complete replication pack-
age is available2. The replication package also allows independent
researchers to verify and replicate the study.

2https://github.com/S2-group/EASE-2022-energy-web-assembly-rep-pkg
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3.1 Goal and Research Questions
The goal of this study is to analyze the impact of using WebAssembly
over JavaScript on the energy efficiency of Android browser processes.
Our goal is refined into the following two research questions:

[RQ1]: How does the use of WebAssembly over JavaScript impact
the energy efficiency of web applications on Android mobile devices?

By answering this research question, software developers will
be given an empirically substantiated perspective on the impact of
compiling to WebAssembly, as opposed to JavaScript, on the energy
efficiency of their web applications.

[RQ2]: To what extent does the choice of browser influence the
energy efficiency of JavaScript and WebAssembly applications? Dif-
ferent browsers use different JavaScript engines [17][18] to compile
both JavaScript and WebAssembly. These different engines could
produce different results. As such, this study will factor in the type
of browser used during the experiment. The answer to this question
may help end-users who want to reduce their energy consumption
in choosing a mobile web browser.

3.2 Subjects Selection
In our experiment, we consider benchmarking algorithms as the
subject. The benchmark chosen for this experiment is the Ostrich
benchmark [19]. This benchmark is chosen mainly because it is
specifically designed to study the run-time performance of program-
ming languages for numerical code. Each of the benchmark func-
tions contain an equivalent implementation of both JavaScript and
C. The Ostrich benchmark is also used in previous studies [5, 6, 10].
Using the compiler Emscripten, the Ostrich benchmark can be com-
piled from C to the equivalent implementation of WebAssembly.
This will allow us to compare JavaScript andWebAssembly in terms
of their energy consumption.

The Ostrich benchmark consists of 12 numerical benchmark
functions. Since four of the functions in this benchmark were crash-
ing when run multiple times in succession, this study uses only 8
of these algorithms. Table 1 contains the 8 used benchmark func-
tions together with a description as stated by the developers of the
Ostrich benchmark[19]. It also shows the number of times each
function will be executed during a single run. For each function,
the algorithm has a run time of approximately one minute. Thus,
the amount of calls depends on the speed of the function. The
benchmark functions used in this experiment are written both in
JavaScript and C. The C implementation is compiled to WebAssem-
bly.

3.3 Experimental Variables
This study has two research questions that both introduce one
independent variable. For RQ1, the independent variable is the
programming language. This independent variable has two treat-
ments, namely the raw JavaScript code and the C code compiled
to WebAssembly. Compiled means WebAssembly binary generated
after the compilation step. For RQ2, the independent variable
is the web browser in which the trials will run. This independent
variable has the two treatments Chrome and Firefox.

The dependent variable for both research questions is the en-
ergy consumption (𝐸) of the Android device in Joules. Energy con-
sumption is computed as follows:

𝐸 =
𝑃

106
𝑊 × 𝑇

1000
𝑠, (1)

where 𝑃 is the average power consumed by the Android device in
microWatts, and 𝑇 is the time in milliseconds that each run takes.

3.4 Experimental Hypotheses
In order to answer the two research questions of our study, we
have formulated the following hypotheses. Given that 𝜇 𝐽 𝑎𝑣𝑎𝑆𝑐𝑟𝑖𝑝𝑡
is the average energy consumption of web applications when using
JavaScript and 𝜇𝑊𝑒𝑏𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 is the average energy consumption
of web applications when using WebAssembly, then the null and
alternate hypotheses for the programming language (𝑝𝑙) in RQ1
are defined as:

𝐻
𝑝𝑙

0 : 𝜇 𝐽 𝑎𝑣𝑎𝑆𝑐𝑟𝑖𝑝𝑡 = 𝜇𝑊𝑒𝑏𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦

𝐻
𝑝𝑙
𝑎 : 𝜇 𝐽 𝑎𝑣𝑎𝑆𝑐𝑟𝑖𝑝𝑡 ≠ 𝜇𝑊𝑒𝑏𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦

The null hypothesis states that the average energy consumption
of web applications when using JavaScript or WebAssembly is the
same. Intuitively, the alternative hypothesis states that there is a
significant difference in average energy consumption when using
JavaScript versus WebAssembly.

Similarly, given that 𝛽𝑐ℎ𝑟𝑜𝑚𝑒 is the average energy consumption
of web applications launched in Google Chrome and 𝛽𝑓 𝑖𝑟𝑒 𝑓 𝑜𝑥 is
the average energy consumption of web applications launched in
Mozilla Firefox, then the null and alternate hypotheses for the
browser (𝑏) in RQ2 are defined as:

𝐻𝑏
0 : 𝛽𝑐ℎ𝑟𝑜𝑚𝑒 = 𝛽𝑓 𝑖𝑟𝑒 𝑓 𝑜𝑥

𝐻𝑏
𝑎 : 𝛽𝑐ℎ𝑟𝑜𝑚𝑒 ≠ 𝛽𝑓 𝑖𝑟𝑒 𝑓 𝑜𝑥

Intuitively, the null hypothesis states that there is no significant
difference between the average energy consumption of web ap-
plications when using either Google Chrome or Mozilla Firefox
browser. Subsequently, the alternative hypothesis states that there
is a significant difference in average energy consumption when
using a different web browser.

The following two hypotheses are defined for the interaction
of browser and programming language, where 𝜇𝑖 is the effect of
treatment i (JavaScript/WebAssembly) of the programming lan-
guage factor from RQ1 and 𝛽 𝑗 is the effect of treatment j (Google
Chrome/Mozilla Firefox) of Web browser factor from RQ2. Then
the null and alternate hypotheses are defined as:

𝐻
𝑝𝑙,𝑏

0 : (𝜇𝛽)𝑖 𝑗 = 0 ∀𝑖, 𝑗

𝐻
𝑝𝑙,𝑏
𝑎 : ∃(𝑖, 𝑗) | (𝜇𝛽)𝑖 𝑗 ≠ 0

The null hypothesis states that for each pair of treatments (i.e.,
programming language and web browser), there is no significant
difference between the average energy consumption of web appli-
cations. However, the alternative hypothesis states that the average
energy consumption of at least one pair of treatments is signifi-
cantly less than others.
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Table 1: Ostrich benchmark functions

Number Benchmark Category Description Runs
1 fft Spectral methods Application of the Fast Fourier Transform function 10

2 hmm Graphical models A forward-backward algorithm which looks for the unknown
parameters of a hidden Markov model 3

3 lavamd N-body methods Calculation of particle potential and relocation within a big 3D space 7
4 lud Dense linear algebra Application of a lower-uper decomposition on a 1024 x 1024 matrix 6

5 nqueens Branch and bound
An algorithm that computes the number of different
possibilities where there are n queens put on a n x n chess board
and the queens are not attacking eachother

3

6 nw Dynamic programming Computation of the optimal alignment of two protein sequences 10

7 page-rank Map reduce An algorithm that ranks websites according to their importance, also
used by Google Search 4

8 spmv Sparse linear algebra Multiplication of a sparse matrix with a vector 15

3.5 Experiment Design
Based on the subject selection, the variables, and the hypotheses
constructed for this experiment, the design type will be two factors
and two treatments (2F-2T). These two factors are the programming
language from RQ1 and the web browser from RQ2. Each factor
has two treatments. Firstly, the two treatments of the programming
language factor are JavaScript and WebAssembly. Secondly, the
two treatments of the web browser factor are Chrome and Firefox.
Since there are two factors in this design type, it has to be taken
into account that these two factors might interact with each other.
Thus, not only the effect of the treatments is being modeled, the
effect of the interaction between these is being modeled as well. In
the experimental hypotheses section, this effect is included by the
last hypothesis.

The factorial design considers all possible combinations of treat-
ments, in which we use the same number of benchmark functions
for all cases.

For answering RQ1, the 8 benchmark functions will be executed
once in JavaScript, and once in C++, which will be compiled to
WebAssembly. We used the Ostrich benchmark in our experiment,
where the benchmark functions contain an equivalent implementa-
tion of both JavaScript and C. That is why we considered C/C++
over other programming languages. It is important to note that, to
answer RQ1, the benchmark functions will be executed on Google
Chrome for Android, since it is currently the most popular browser
on the Android operating system [20].

For answering RQ2, all subjects are executed for each possible
combination of browser and programming language. About the
browsers, Google Chrome and Firefox browsers are chosen since
they follow different approaches to compile towards WebAssem-
bly. Specifically, Chrome’s V8 compiles to machine code [17], and
Firefox’s SpiderMonkey compiles to intermediate bytecode [21].
Finally, each trial of our experiment is repeated 30 times, so for
each pair of programming language and web browser. During each
run, the total energy consumption (Joules) of the Android device
is measured. These results are then used to calculate the energy
efficiency of each algorithm in each web browser. These repetitions
per trial are done to take into account the intrinsic variability of
the energy measurement process [16].

3.6 Data Analysis
To answer RQ1 and RQ2, the collected measures are analyzed in
four phases: data exploration, check for normality and transfor-
mations, hypothesis testing, and effect size estimation. In the data
exploration phase, we get a first indication of the obtained energy
consumption values via a combination of descriptive statistics, his-
tograms, and box plots. Next, we analyze the distribution of the
data. Specifically, we check if the energy consumption measures are
normally distributed via (i) visually inspecting their Q-Q plots and
(ii) applying the Shapiro-Wilk normality test. Since this experiment
has more than one factor, it is greatly desired that these values are
normally distributed. This is because an ANOVA test is possible
when there is a normal distribution, but this is not the case when the
data is not normally distributed. Since there is no non-parametric
counterpart for a two-factor design, an ANOVA test cannot be used
when there is no normal distribution of data [14]. Here, ANOVA
is an example of a parametric test. In non-parametric tests, only
very general assumptions are made and the data does not have
to be normally distributed. If data is normally distributed, we will
apply a single statistical test to test the statistical hypothesis of both
research questions. As mentioned before, this test will be two-way
ANOVA. The threshold for 𝛼 will be set to 0.05. If the data is not
normally distributed, the measurement data will be transformed.
As was mentioned by Stevens in his book "Applied Multivariate
Statistics for the Social Sciences", the impact on the validity of non-
normal data is small enough for an ANOVA analysis so that the
statistical test still produces realistic results [22]. The significance
level will again be 𝛼 = 0.05. If this transformation does not lead to
normality, logistic regression is used. Finally, to statistically assess
the magnitude of the differences between the energy consumption
of the treatments of both factors, the Cliff’s Delta measure will be
used [23]. This is a non-parametric effect size measure that will be
used complementary to the hypothesis testing. Where the ANOVA
test will determine whether there is a statistical significance, the
Cliff’s Delta measure will determine whether there is a practical
significance in the differences between the treatment pairs [24]. The
Cliff’s Delta statistics will be interpreted as proposed by Grissom
et al. [25].
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4 EXPERIMENT EXECUTION
In this section, the technical setup used for executing the experi-
ment will be described. This includes the different devices used, the
infrastructure that connects these devices, and the software tools
used to run the experiment.

Figure 1 shows a schematic overview of the infrastructure of
our experiment. The infrastructure of the experiment consists of
two devices: (i) an Android device on which the subjects of the
experiments will be executing, and (ii) a Raspberry Pi, which will
be used to orchestrate the experiment and is responsible for col-
lecting experimental data from the Android device. The Raspberry
Pi is convenient for this experiment because the USB ports can be
programmatically disabled, ensuring that the phone is not charg-
ing during the experiment. The trials are run on a Huawei Nexus
6P phone. The energy consumption of the Android device is mea-
sured using the Trepn plugin3, a software-based power profiler
for Android devices. Trepn is widely used in empirical research
on energy-efficient software [26–28], and it has been tested to be
sufficiently accurate like the hardware-based power monitors (e.g.,
the Monsoon Power Monitor4), with an error margin of 99% [29].
Due to version limitations of the Trepn framework, the phone will
run Android 6. The system specs for the Nexus 6P can be seen in
Table 2.

Python scripts

Android Runner

JavaScript WebAssembly

Applications

Firefox Chrome

Browser applications

Trepn

Profiler

HTML pages
Python scripts
Python scripts

HTML pages

Raspberry Pi Android device

2. starts profiler

3a. starts one 

browser application


with url


1. stops all 

applications



local

storage

7. stops profiler

and close browser


3b. starts 

collecting data


6. saves colllected 

data


4. starts custom

python scripts


5. opens subjects

Figure 1: Overview of the experiment execution

The browsers that are used to execute the subjects are Fire-
fox Nightly version 95.0a1 and Google Chrome 94.0. Before ev-
ery run in Firefox, due to the duration of the runs, the setting
"dom.max_script_run_time" is set to 0, to allow scripts to run in-
definitely. Firefox sets this setting to 20 seconds by default. Such
a configuration is not necessary for Chrome, which allows long-
running scripts by default.

We take special care in keeping the execution environment as
clean as possible. Specifically, the application data of the browser
will be cleared, so that no caching will influence the power measure-
ments and the run time of the run. Furthermore, to avoid charging
the Android device during execution, before every run, the Rasp-
berry Pi USB port to which the Android device is connected is
3https://github.com/S2-group/android-runner/tree/master/AndroidRunner/Plugins/
trepn
4https://www.msoon.com/

disabled. After each run, it is re-enabled to allow for charging be-
tween runs. Android-runner provides functionality to achieve this.

For the orchestration of the experiment, a Raspberry Pi 4B will
be used, which is a convenient, low-power micro-computer with
decent specifications and which runs Linux. This device will con-
trol the phone and initiate the different trials. Furthermore, the
Raspberry Pi will record the Trepn logs of the power consumption
of the phone during the trials. The technical specification of the
Raspberry Pi can be found in Table 3.

To control the experiment, the Raspberry Pi will use Android
Runner [30], a Python framework used to execute experiments on
Android devices. The experiment will be defined using a JSON file
describing the steps of the experiment. Then, the entire execution of
the experiment is managed by Android Runner with a combination
of Python scripts and Android Debug Bridge (ADB) commands. The
Raspberry Pi will instruct the Nexus 6P to execute the browsers
and open the HTML files containing the subjects. To eliminate
the influence that a fluctuating internet connection may have, the
HTML files will be served by the Raspberry Pi over WiFi to the
Nexus 6P.

Table 2: Huawei Nexus 6P specs

OS Android 6 (Marshmallow)
Chipset Qualcomm MSM8994 Snapdragon 810
CPU Octa-core

(4x1.55 GHz Cortex-A53 & 4x2.0 GHz Cortex-A57)
GPU Adreno 430

Storage 32 GB eMMC 5.0
RAM 3GB
Screen 5.7 inch OLED QHD, (2560 x 1440)
WLAN Wi-Fi 802.11 a/b/g/n/ac, dual-band, Wi-Fi Direct
USB Type-C 2.0

Battery LiPo 3450 mAh, Fast charging 15W

Table 3: Raspberry Pi 4B specs

OS Raspian GNU/Linux 10 (Buster)
CPU Broadcom BCM2711, Quad core Cortex-A72 (ARM v8)
RAM 8GB
USB USB 3

The timeline of the experiment will be as follows. Firstly, all
running applications on the Nexus 6P will be stopped, represented
by 1 in Figure 1. This way the influences of other processes on the
energy consumption of the device will be minimized. Secondly, the
profiler will be started, 2 in Figure 1. Third, the browser will be
opened and then instructed to, one by one, open the HTML docu-
ments which directs the browser to load the subject with specific
treatment (JavaScript or WebAssembly). Each treatment will be
executed 30 times and each run will last for about 1 minute. After
each execution, the execution time and power consumption during
execution will be measured and stored. The order of the execution
of the trials will be randomized to counteract the possible variabil-
ity of the energy measurements. After each trial execution, the
browser cache will be cleared. Then step three will be repeated for
the other browser. Finally, the data of all runs will be aggregated,
and the power measurements over time will be converted to Joules.

https://github.com/S2-group/android-runner/tree/master/AndroidRunner/Plugins/trepn
https://github.com/S2-group/android-runner/tree/master/AndroidRunner/Plugins/trepn
https://www.msoon.com/
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5 RESULTS
5.1 Impact on energy efficiency (RQ1)
5.1.1 Data Exploration. An overview of the amount of energy that
is consumed (in Joules) when running the experiment is given
in Table 4, and Figure 2. From Table 4 follows a clear average
energy consumption throughout the experiment of 56,847 Joules
for both programming languages. When looking at JavaScript and
WebAssembly separately, a large difference was found between
the average energy consumption of both languages. Namely, the
average energy consumption of JavaScript is 81,785 Joules. This
average is larger than 31.91 Joules, which is the average energy
consumption of WebAssembly.

Table 4: Descriptive statistics for RQ1

Energy Consumption (Joules)
Both JavaScript WebAssembly

Minimum 3.251 3.251 4.039
1st quartile 24.996 35.912 22.226
Median 42.073 72.302 27.913
Mean 56.847 81.785 31.910

3rd quartile 72.280 130.752 46.031
Maximum 164.219 164.219 68.531

What is noticed as well when looking at Table 4, is the maxi-
mum energy consumption of JavaScript and WebAssembly. This
maximum is almost 100 Joules bigger for JavaScript compared to
WebAssembly.

To get a better understanding of the data, two boxplots are cre-
ated. Figure 2 illustrates a boxplot of the energy consumption per
language. From the diagram, we get an overview of the energy
consumption for each benchmark function per language type. From
the boxplot, we can infer that there is a large difference in energy
consumption values for JavaScript and WebAssembly.

5.1.2 Check for normality. In order to check the normality of
the data, a histogram for the distribution of the consumption of
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Figure 2: Energy consumption of JavaScript (red) compared
to WebAssembly (green)

JavaScript and WebAssembly is given in Figure 3. Based on these
histograms, we can infer that the data for both treatments are not
normally distributed.
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Figure 3: Frequency of energy consumption of RQ1

To confirm this presumption, the Shapiro-Wilks test is executed
on the data. From this followsW= 0.91868 and p-value = 2.39e-09 for
JavaScript, and W = 0.95126, p-value = 1.476e-06 for WebAssembly.
Thus, since the p-value of both JavaScript and WebAssembly is
below the significance threshold of 0.05, the data is not normally
distributed. In order to be able to execute an ANOVA test, the data
is transformed to normalized data. This is done by using orderNorm
for both JavaScript and WebAssembly, which results in the Q-Q-
plots shown in Figure 4.
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Figure 4: Q-Q-plot of JavaScript and WebAssembly

By looking at these Q-Q-plots, the data seems normally dis-
tributed. To confirm this, the Shapiro-Wilks test is executed again.
This leads to a value of W = 0.99978 and p-value = 1 for both
JavaScript andWebAssembly. Thus, this data is normally distributed.

5.1.3 Hypothesis Testing. Since the transformed data is normally
distributed and we will only focus on the treatment language, a one-
way ANOVA test is executed. Due to the influence of the difference
in the output of the benchmarks on the data, a within-subjects factor
is added as well. By adding the benchmarks as a within-subjects
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factor, it is possible to compare these benchmarks under different
conditions. Thus, a one-way repeated measure is executed. Here
the different conditions are the languages used. As can be seen in
Table 5, the p-value is below 0.05 which means that we can reject
the null hypothesis 𝐻𝑅𝑄1

0 . Therefore it can be said that the use of
JavaScript or WebAssembly has a different impact on the energy
consumption of web applications on Android mobile devices.

Table 5: One-way ANOVA for RQ1

Df Sum Sq Mean Sq F value p-value
Language 1 261197 261197 188.06 < 2.2e-16
Residuals 418 580563 1389

5.1.4 Effect Size Estimation. By calculating the effect size estima-
tion using Cliff’s Delta and a density plot, the strength of the differ-
ences between the treatment pairs will be estimated. Looking at the
density plot in Figure 5, it is expected that effect size is big consider-
ing the height and spread of both curves. The value of Cliff’s delta
estimation is large (0.5907937). This means that there is a strong
difference between the use of JavaScript versus WebAssembly in
Chrome.
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Figure 5: Energy consumption density curve of JavaScript
compared to WebAssembly

5.2 Influence of the choice of browser (RQ2)
5.2.1 Data Exploration. In Table 6, and Figure 6we give an overview
of the energy consumption of each run of the experiment for the
browsers Chrome and Firefox. Similar to Table 4, Table 6 shows that
the average energy consumption of JavaScript is a lot larger than
the average energy consumption of WebAssembly. It also shows
that the difference in the average energy consumption between
Chrome and Firefox is not very large. However, Table 6 shows that
Chrome has a larger average energy consumption than Firefox.

Another data point that stands out, is the maximum value of
Firefox combined with JavaScript. This maximum value is larger
than the maximum value of Chrome combined with JavaScript,
even though the mean of Firefox and JavaScript is a lot smaller

than the mean of Chrome and JavaScript. Likewise, the minimum
energy consumption of Firefox and JavaScript is larger than the
minimum energy consumption of Chrome and JavaScript. This
probably means that the data points that are measured for Firefox
and JavaScript have more outliers than the data points measured
for Chrome and JavaScript.
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Figure 6: Boxplot of the energy consumption of JavaScript,
WebAssembly, Chrome and Firefox

The boxplot in Figure 6 shows the energy consumption of JavaScript
and WebAssembly combined with Chrome and Firefox. From the
diagram, we get an overview of the energy consumption per lan-
guage to the type of browser used. Again, the big difference in the
energy consumption between JavaScript and WebAssembly imme-
diately stands out. However, when looking at the different types
of browsers, the difference in energy consumption is smaller. But,
as discussed earlier in this paragraph, this boxplot clearly shows
that this difference does exist between the energy consumption of
Chrome and Firefox. Namely, Chrome consumes more energy than
Firefox. Since the mean of each treatment is larger than the median,
it follows that the data is positively skewed. Thus, the data is most
likely not normally distributed.

5.2.2 Check for normality. For the normality check of the data, a
histogram for the treatments is created to give a first impression.
These histograms are shown in Figure 7, and it shows the distribu-
tion of the consumption of JavaScript and WebAssembly combined
with Chrome and Firefox. When solely looking at these histograms,
it looks like none of these data sets are normally distributed.

However, it cannot be assumed that data is not normally dis-
tributed by just looking at a histogram of the data. Thus, the Shapiro-
Wilks test is executed as well. The value of W and the p-value of
this test is given in Table 7 for each of the treatments. From this
follows that the data is indeed not normally distributed, since the
p-value is remarkably smaller than 1 for each language-browser
combination.

Since the data has to be normally distributed in order to execute
a two-way ANOVA test, the data is transformed. This is done by
applying orderNorm to all of the data. The transformed data is
shown in the Q-Q-plots of Figure 8.
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Table 6: Descriptive statistics for RQ2

Energy Consumption (Joules)
Chrome and JavaScript Chrome and WebAssembly Firefox and JavaScript Firefox and WebAssembly

Minimum 3.251 4.039 4.226 2.755
1st quartile 35.912 22.226 23.940 10.570
Median 72.302 27.913 52.466 17.669
Mean 81.785 31.910 69.669 19.017

3rd quartile 130.752 46.031 115.576 26.689
Maximum 164.219 68.531 170.553 41.812
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Figure 7: Distribution of energy consumption of RQ2
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Figure 8: Q-Q-plot of JavaScript and WebAssembly com-
bined with Chrome or Firefox

Table 7: Shapiro-Wilks test for RQ2

W p-value
Chrome and JavaScript 0.91868 2.39e-09

Chrome and WebAssembly 0.95126 1.476e-06
Firefox and JavaScript 0.91861 2.36e-09

Firefox and WebAssembly 0.95285 2.138e-06

These Q-Q-plots look like they show normalized data, but a
Shapiro-Wilks test is executed again to confirm this presumption.

From this follows the value of W = 0.99978 and a p-value of 1
for all of the treatments. Thus, the transformed data is normally
distributed.

5.2.3 Hypothesis Testing. Assuming the data is normally distributed
after transformation, a two-way ANOVA test is executed to calcu-
late the contribution of both the different languages and browsers.
In Table 8 the results are presented. It can be seen that both the
language and the browser affect on the energy consumption of the
web applications since they have a p-value of respectively < 2.2e-16
and 9.355e-07. However, the two treatments are not significantly
interacting with each other considering the p-value of 0.8782.

Table 8: Two-way ANOVA for RQ2

Df Sum Sq Mean Sq F value p-value
Language 1 530554 530554 394.6031 <2.2e-16
Browser 1 32834 32834 24.4207 9.355e-07
Language:
Browser 1 32 32 0.0235 0.8782

Residuals 836 1124025 1345

5.2.4 Effect Size Estimation. In Table 9 the effect size measures
are shown of all the possible pairs of the two treatments. For three
out of the six treatment pairs, the effect size is large. This means
that according to Cliff’s Delta estimation, the difference between
the treatments of these pairs is noticeable strong. In one of the
treatment pairs, Firefox JavaScript versus Chrome JavaScript, the
effect size is negligibly weak. Looking at the density plot presented
in Figure 9, it is also shown that the differences between ’Firefox and
JavaScript’ versus ’Chrome and JavaScript’ are smaller compared
to the other treatment pairs. Whereas the other treatment pairs are
different in height, spread, or both.

Table 9: Effect Size Estimation for RQ2

Treatment pair Cliff’s Delta estimate
Chrome JS - Chrome WASM 0.5907937 (large)
Firefox JS - Firefox WASM 0.6470295 (large)
Firefox JS - Chrome JS 0.1351927 (negligible)
Firefox WASM - Chrome WASM 0.4539229 (medium)
Firefox WASM - Chrome JS 0.7060317 (large)
Firefox JS - Chrome WASM -0.4078912 (medium)



Comparing the Energy Efficiency of WebAssembly and JavaScript in Web Applications on Android Mobile Devices EASE 2022, June 13–15, 2022, Gothenburg, Sweden

0.00

0.01

0.02

0.03

0 50 100 150
Energy consumption (J)

D
en

si
ty

Group
Chrome and Javascript
Chrome and WebAssembly
Firefox and Javascript
Firefox and WebAssembly
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6 DISCUSSION
The results of the application of the one-way ANOVA test for RQ1
allow us to reject the𝐻𝑅𝑄1

0 null hypothesis. This means that the use
ofWebAssembly orWebAssembly for web applications has a signifi-
cantly impact on the energy consumption with respect to JavaScript
on Android mobile devices. Besides a one-way ANOVA test, the
Cliff’s Delta effect size measure was applied to the data as well. This
measure shows a large effect size between the use of JavaScript
versus WebAssembly. Thus, generally, it can be concluded that
the difference in energy consumption between WebAssembly and
JavaScript is statistically confirmed and it is large.

The results of this paper give developers an indication of the
energy consumption of JavaScript and WebAssembly. This can be
used by developers when they have to decide between these two
types of languages for creating a web application.

For what concerns RQ2, the two-way ANOVA test reveals that
both the language and the browser significantly affect the energy
consumption of web applications. From this test follows as well that
the language type and the browser type are not significantly inter-
acting with each other. After an ANOVA test, the Cliff’s Delta effect
size measure was applied to the data. This effect size is large for
the pairs Chrome JavaScript versus Chrome WebAssembly, Firefox
JavaScript versus Firefox WebAssembly, and Firefox WebAssem-
bly versus Chrome JavaScript. There is a medium effect size for
the pairs Firefox WebAssembly versus Chrome WebAssembly, and
Firefox JavaScript versus Chrome WebAssembly. The effect size is
negligible for Firefox JavaScript versus Chrome JavaScript. Based
on these statistical tests, it can generally be stated that both the lan-
guage and the browser have an impact on the energy consumption
of web applications.

When looking at the results from the perspective of web devel-
opers, the focus is mostly on the fact that WebAssembly consumes
consistently less energy compared to JavaScript. For a web devel-
oper, this means that if they have JavaScript functions implemented
which are constantly running in the background (e.g., a poller for
fetching remote data, a thread for real-time image manipulation,
etc.), it might be convenient to implement these functions in C and

then to compile them to WebAssembly. This will make their web
applications more energy efficient with respect to using a plain
JavaScript implementation.

Based on our empirical results, Firefox tends to consume less en-
ergy. This result can be useful for users in some specific conditions.
For example, in the case that their device only has 1% of energy
left, and they want to keep working on their device for the largest
amount of time possible. The mean energy consumption of We-
bAssembly on the Chrome browser is 31.91 Joules, and on Firefox
is 19.02 Joules, which is 12.89 joules less than Chrome. This leads
to a 40.39% energy saving on average when switching to Firefox
from Chrome. To put this into perspective, if 5 million users switch
to Firefox from Chrome, then a total of 2 million Joules of energy
will be saved. This amount of energy is equivalent to the energy
consumed by a 100W bulb for 6 hours.

For browser vendors, it is important to notice that Mozilla
Firefox is an open-source project. Thus, browser vendors can look
at its engine for executing JavaScript and WebAssembly. From this,
they can take inspiration in order to make their execution engines
more energy efficient.

7 THREATS TO VALIDITY
This section will provide an analysis of possible threats to validity
of the study. The threats are categorized into four different types, as
defined by Cook and Campbell: internal validity, external validity,
construct validity, and conclusion validity [31].
Internal Validity. System processes may impact the energy con-
sumption of the Android device. To mitigate this, the order of
execution of the subjects was randomized, and before every run,
the application data of the to be used browser is cleared. As such,
the risk of system processes impacting the results of a subject is
minimized. It could also be possible that the consumption of the
Android device is influenced by the condition of the network over
which the subjects are served, for example when the download
time is increased due to fluctuations in the WiFi connection. To
mitigate this, a dedicated router is used which only connects the
Raspberry Pi and the Android device. Furthermore, the Android
device is placed at a constant distance from the router and the
Raspberry Pi is connected with an ethernet cable. A replication
package is available for independent verification of the setup and
the generated data.
External Validity. Themost relevant threat to the external validity
of this study is the fact that the subjects are not real-life applications,
but benchmarking algorithms designed to be compute-intensive.
This means that the results of this study can be misleading when
compared to the situation in the industry, where mobile web appli-
cations typically do not do a minute of intense computation on the
client-side. However, the benchmark that was used in this study,
was used in multiple other studies [5] [6] [10]. A future study
might compare close to real-life web applications implemented
in JavaScript and WebAssembly. We used a Huawei Nexus 6P to
run the trials on. Therefore, the version of Android (Android 6,
Marshmallow) used may not represent the current state of Android
(Android 12, Snow Cone). We choose to run the phone on Android 6
due to the compatibility issues with Trepn. Nevertheless, newer de-
vices running newer Android releases may lead to different energy
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measurements; further replications of the performed experiments
can help in mitigating this potential threat to validity.
Construct Validity. To avoid inadequate preoperational explica-
tion of constructs, we defined our constructs a priori, before the
experiment execution. All the details related to the design of the
experiment (e.g., the goal, research questions, variables, data analy-
sis procedures) was defined before executing the experiment. We
used the GQM approach to define our goal, which then guided
the definition of the research questions of this study. The hypothe-
ses, dependent and independent variables, and treatments were all
defined during the planning phase of the experiment.
Conclusion Validity. To mitigate this type of threat, we used a
fixed number of treatments for both the research questions. De-
pending on the research question those treatments changed. We
made use of 8 subjects so that means in total 32 web applications.
We then executed 30 runs per web application and as a result, we
have a relatively large total sample size of 960. The procedures
and tests in our statistical analysis were defined a priori. During
the statistical analysis, it was checked whether the assumptions of
the applied statistical tests were met. This check validated that the
right statistical tests was used on the data. The replication package
contains all the raw data and the analysis scripts, this can be used
for independent inspection.

8 CONCLUSIONS
In this paper, the impact on the energy consumption of web ap-
plications is measured between web browsers and programming
languages. In our experiment, we used eight different benchmark
functions to measure the energy consumption across the two treat-
ments. The results of this experiment show that there is a significant
difference in energy consumption between the use of WebAssembly
and JavaScript. In addition, the choice of browser also contributed
to the differences in energy consumption. Therefore to improve
the energy efficiency of web applications, we recommend software
developers to compile web applications to WebAssembly when
possible. In the same sense, we suggest user to use the browser
Firefox over Chrome, when energy is an issue. Combining these
two factors will lead to the optimization of energy consumption
when using web applications.

As future work, this experiment can be extended by using real-
life web applications instead of benchmark functions. Such exten-
sion can make the results more representative wrt real-life situa-
tions. Additionally, we are interested in running the same experi-
ment on a different device, for example, a smartphone with an iOS
operating system. Lastly, the experiment can be repeated on differ-
ent browsers. Since the use of web browsers Firefox and Chrome
have an impact on energy consumption, it will be interesting to
compare other web browsers as well. In the future, it will be inter-
esting to perform a trade-off analysis between energy consumption
and the run-time performance of WebAssembly.
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