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ABSTRACT
Context. Due to the growing popularity of smartphones, mobile web
browsing is more popular than ever with users desiring fast loading
web apps and low energy usage. A technique that might improve
the run-time performance and reduce the energy consumption of
this action is the Critical CSS technique.
Goal. The goal of this research is to analyze the impact of the Critical
CSS technique for the purpose of evaluating the impact on run-time
performance and energy consumption from the point of view of a
developer in the context of Android mobile web apps.
Method. To assess the impact of the Critical CSS technique, 40
web apps were served with and without Critical CSS on a mobile
Android device. For each website, the energy consumption, load
time, first paint and, first contentful paint were measured.
Results. Applying the Critical CSS technique had a medium effect
size on the first paint for Google Chrome, and on the first contentful
paint for Google Chrome and Mozilla Firefox, the effect size is small.
Therefore, we can claim that applying critical CSS to web apps
served to Android mobile devices has a small but positive effect on
their run-time performance. The loading time difference for Google
Chrome was small to negligible. Finally, the energy consumption
for Google Chrome and Mozilla Firefox, and the loading time and
first paint for Mozilla Firefox showed no significant differences.
Conclusions. Depending on the characteristics of the web applica-
tion, it is advisable to apply the Critical CSS technique to enhance
the run-time performance (e.g., to ensure a fast loading time of the
web app) of Android mobile web apps. Moreover, the experimental
results show that applying the Critical CSS technique tends to have
no significant impact on the energy consumption of mobile web
apps on Android.
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1 INTRODUCTION
Using a smartphone has become a popular way of surfing the web.
As of August 2021, mobile browsing has exceeded desktop browsing
by 16.64 percentage points1. Over time, web apps have increasingly
become more sophisticated. Many have added more value by sup-
porting functionalities and content types such as videos, maps, and
interactive elements. This is great for the usability and user expe-
rience, however, it does come at a price. Loading the full content
of a requested web app adds overhead to all parties involved in
this process, from the end-user’s device to the router, and back-
end servers. All these processes require electricity and processing
power and therefore tend to have an impact on their sustainability
[1] and run-time performance [2]. While the content of web apps
increases it is also the case that the amount of users is growing,
and will continue to do so2. Scaling all the available content to
satisfy these new consumers also affects the amount of electricity
and computation power required by the user’s smartphone as well
as the infrastructure that enables the user to load a web app.
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Figure 1: Visual representation of the CSS execution process

Any loaded web app is a collection of files together constituting
a page. Most web apps consist of three main file types: Hypertext
Markup Language (HTML), JavaScript (JS), and Cascading Style
Sheets (CSS)3 4. A simplified graph displaying the functioning of
web app rendering is shown in Figure 1. HTML can be used to
add text, sections, and a simple structure to your web app. JS is a
programming language and can be used to add more complicated

1https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
2https://www.statista.com/forecasts/1146844/internet-users-in-the-world
3https://www.w3.org/standards/webdesign/htmlcss
4https://www.w3.org/standards/webdesign/script
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functions to your web app. For example, some functions could add
calculations, allowing a user to hide specific HTML content, or send
network requests to run external programs. Finally, CSS is used to
style web apps by being able to change style related attributes such
as colors, locations, and fonts of HTML elements.

In practice, not all the CSS of a web app is needed at all times.
Only for the visible part of the web app, the CSS is required to let
it function properly. The rendering of web apps is blocked until
the CSS files are requested, received, downloaded, and processed
by the browser. In Figure 1, all elements related to CSS are shown
in the red frame. By reducing the amount and size of the files, and
thereby reducing the time it takes to render the page, the perceived
run-time performance can be increased5.

Critical CSS is a technique that marks all the non-essential CSS,
which is the content below-the-fold. The below-the-fold content
includes all content a user can not see when the page is loaded
initially (see Figure 2). Jovanovski and Zaytsev conducted an exper-
iment to see how inlining critical CSS creates a significant decrease
in the time to first render of a web app using 909 out of the 1000
most popular web apps from Alexa [3]. Based on the results, they
concluded that on average the initial page rendering of a web app
is 1.96 seconds faster when applying the Critical CSS technique.
Therefore, by applying this technique the amount of work a browser
has to do to show an initial page can be reduced. It is common to
inline the critical-path of the CSS, which means that the critical
CSS file is placed in the <head> element of the HTML document
directly while the non-critical CSS file is loaded asynchronously
(by a JS call). By doing so, the browser does not have to load all the
CSS at once.

Above the fold

Below the fold

Figure 2: Visual representation of below/above the fold con-
tent on the python.org site

Extracting all the above-the-fold CSS manually can become quite
time consuming depending on the complexity of the web app. For
example, the homepage of Amazon.com uses 1499 lines of CSS for

5https://web.dev/extract-critical-css/

the initial load, manually checking whether all these lines are used
for above or below the fold content can take a while. Fortunately,
there exist many open source tools that can automatically extract
the critical-path of web apps. Three popular free tools are: Criti-
calCSS 6, Critical 7 and Penthouse 8 with 1600, 9300 and 2500 stars
on GitHub respectively.

The goal of this research is to analyze the impact of implementing
such Critical CSS on run-time performance and energy consump-
tion in the context of consumer Android web apps. We discuss
related work in Section 2. Then, the setup and execution of the
experiment is discussed in Section 3 and Section 4 respectively. We
show the results of our experiments in Section 5. Discussion and re-
search threats are discussed in Section 6 and Section 7 respectively.
Finally, we present our conclusions in Section 8.

2 RELATEDWORK
The impact of critical CSS on battery usage of mobile devices while
browsing the web has not been researched as much as other aspects
of mobile web browsing. For example, battery usage while mobile
browsing and how this can be measured have been researched
extensively. The impact of Critical CSS has also been researched
separately but not in combination with the impact on run-time
performance and energy consumption of mobile devices. In this
section, we will be summarizing relevant research, describing how
our research differs from these papers, and how it builds upon them.

Thiagarajan et al. [1] proposed a tool to measure the energy con-
sumption of different web elements, including CSS and Javascript
files. With this tool, they measured the consumption of these ele-
ments for popular sites. It was shown that for Amazon.com 17% of
the energy consumption was caused by CSS files while for Gmail it
was only 3%. They discovered that the energy consumption caused
by CSS files is highly dependent on how many items have to be
styled using CSS rules. However, this research was published in
2012 and many claims that are made, such as the claim that compa-
nies have very limited optimization for mobile phones, may not be
completely true anymore. It also focused on all elements required
to render web apps while we only focus on the effect on run-time
performance and energy consumption of using critical CSS. The
last difference is that the research made use of hardware to measure
the energy consumption while our research uses software based
energy consumption measurements.

Bui et al. [4] performed a trade-off analysis between the energy
and run-time performance inmobile web browsers. They discovered
that mobile browsers are largely focused on run-time performance.
In their research, they aimed to reduce the energy consumption of
mobile web browsers without or minimally increasing loading times
for mobile web apps. They managed to save 24.4% battery usage for
Chromium on average without increasing load times and 10.5% of
battery usage saved for Firefox with a 1.69% increase in load times.
These power savings were made by combining Network-aware
Resource Processing, Adaptive Content Painting, and Application-
Assisted Scheduling. Their research proves that big energy savings
can still be made but they have not tested the energy and run-time

6https://github.com/filamentgroup/criticalCSS
7https://github.com/addyosmani/critical
8https://github.com/pocketjoso/penthouse
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performance impact of critical CSS. Similar to the experiment of
Bui et al., in this paper, we aim to analyze the trade-off between
the energy and run-time performance but for the critical CSS.

Jovanovski and Zaytsev [3] have shown, for 909 out of the 1000
most popular web apps of 2016, that on average the CSS that is
not inlined adds 1.96 seconds to the time it takes to render an
initial web app. To find and extract the CSS that can be inlined
they have created a tool that has three key functions: 1) find and
extract CSS files from HTML documents, 2) find and extract CSS
rules that are relevant for a given resolution (used to extract above-
the-fold critical CSS), 3) remove external CSS scripts and split up
the needed CSS files by inlining the critical CSS and use JS to load
in the remaining CSS asynchronously. Our research differs from
the described research as we focus on the possible change in energy
consumption and run-time performance due to critical CSS. The
tool provided by the research can be valuable as it is able to perform
a key part of our research, namely to add critical CSS to web apps.

3 STUDY DESIGN
3.1 Goal and Research Questions
The goal of this study is to analyze the impact of the Critical CSS
technique for the purpose of evaluating the impact on run-time perfor-
mance and energy consumption from the point of view of a developer
in the context of Android mobile web apps.

To achieve this goal, we identify two main areas it could affect
- run-time performance and energy consumption. Therefore, we
refine our goal into the following two research questions:

RQ1: What is the impact of the Critical CSS technique on the
run-time performance of Android mobile web apps?

To measure this, we calculate in milliseconds (ms) the first paint,
showing any elements on the screen, as well as the first contentful
paint, showing actual content such as text or images on the screen.
Finally, the loading time of the entire web app is also measured.
The main advertised benefit of the Critical CSS technique is that
the initial load time of a web app can be reduced [3]. We investigate
this using this research question.

RQ2: What is the impact of the Critical CSS technique on the
energy consumption of Android mobile web apps?

We measure this using software estimates of Android device
energy consumption in Joule (J) during our experiments. For any
new tool, it is also important to question the impact on energy
consumption. In the context of critical CSS, it is not immediately
clear whether it should have a beneficial or detrimental effect on
energy consumption. Based on the implementation, it could mean
less CSS is parsed, but it could also mean that redundant CSS is
fetched from a server. In this research question, we investigate this.

Since the goal is to analyze the impact of the Critical CSS tech-
nique on the run-time performance and energy consumption of
mobile web apps, the main perspective will come from the develop-
ers who have an interest in knowing what the exact influence is
of Critical CSS on the web apps that they develop. Another group
is the end-users. They are not directly interested in this research,
however, they do benefit from any gains that may be made in the
usage of their mobile Android devices.

3.2 Subjects Selection
To select the subjects of this experiment, we consider the entire pop-
ulation of Android mobile devices, Android versions, web browsers,
and web apps. After that, a sample from the population is taken
to perform the experiments. The population of distinct Android
mobile devices is immense. In 2015, over 24,000 unique Android
devices were released9. Sampling a meaningful amount of unique
android devices is nearly impossible. Instead, a single device is
tested. The experiments are performed on a Huawei Nexus 6P de-
vice. Similarly, the number of Android versions is also large. There
were 20 main Android versions released between 2008 and 2020
with many smaller versions in between10. The Android version the
tests are performed on is Android 6.0.1, a single Android version
is tested to avoid complicating the experiment. Furthermore, we
expect that the specific Android version has no impact on brows-
ing the web. Another important decision is which browsers are
tested. The top six browsers combined have 98.4%market share with
Google Chrome having roughly 64.3% market share, Safari 24.2%,
Samsung Internet 5.3%, Opera 2.2%, UC Browser 1.9% and Mozilla
Firefox 0.5%11. Furthermore, Google Chrome, Mozilla Firefox, and
Safari make up the top three most commonly used browsers for
both initial development and testing by CSS developers12. From
these statistics, the device we are using, and Android Runner, we de-
cide to test Google Chrome and Mozilla Firefox as these are the top
two browsers the Nexus 6P and Android Runner supports properly.
The browsers considered in our experiment are Google Chrome
94.0 and Mozilla Firefox 93.0.

Table 1: Inclusion and exclusion criteria for subjects

Criteria Description

Inclusion Top 1000 of Tranco list
Exclusion #1 <style>tag in HTML head
Exclusion #2 Not downloadable with web app download tools

We randomly select 40 web apps from the Tranco list [5], an
aggregation of four existing lists (i.e., Alexa, Umbrella, Quantcast,
and Majestic) which is stable and it has been designed for reducing
the effort in replicating studies based upon it [6]. However, the
Tranco list has the 1 million most popular web apps in descending
order. Since this research wants to discover the real-world impact
of the Critical CSS technique, it is logical to test it on the web apps
that are being accessed the most and not on web apps with only
a few visits per day. Therefore, 40 web apps from the top 1,000 of
the Tranco list are randomly selected. Before deciding to include
a certain web app, we firstly check if it does not already use the
Critical CSS technique. This check is performed by checking if there
is a < 𝑠𝑡𝑦𝑙𝑒 > tag present in the head of the HTML file using a
Python script, this script is available in the replication package as
explained in Section 3.7. The absence of this tag indicates that the
Critical CSS technique is not used on the web app.

9https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-
2015-08/2015_08_fragmentation_report.pdf
10https://www.javatpoint.com/android-versions
11https://gs.statcounter.com/browser-market-share/mobile/worldwide
12https://2021.stateofcss.com/en-US/

https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.javatpoint.com/android-versions
https://gs.statcounter.com/browser-market-share/mobile/worldwide
https://2021.stateofcss.com/en-US/
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3.3 Experimental Variables
To answer the research questions defined in Section 3.1 we consider
the usage of the Critical CSS technique as our independent variable.
There are two treatments for Critical CSS: The Critical CSS technique
is not applied and The Critical CSS technique is applied. At every run
of the experiment, a copy of the original web app is served in case
the treatment is not applied, whereas for the applied treatment a
modified version of the web app where the Critical CSS technique is
used is served. This modified version of the web app is made using
the Critical13 tool. There is one blocking factor, namely the type of
browser. Browsers might use different methods of rendering web
apps and therefore we investigate them separately. The browsers
considered in this research are Google Chrome and Mozilla Firefox
as discussed in Section 3.2.

Table 2: Dependent variables considered in this research

Name Description RQ

Loading time
(lt)

Time (in ms) until the web app is loaded
in its entirety in seconds

RQ1

First paint
(fp)

Time (in ms) until anything is visually
different from the previous screen.

RQ1

First content-
ful paint (fcp)

Time (in ms) until the first text or image
is painted.

RQ1

Energy con-
sumption (e)

Energy consumption (in J) by themobile
browser running on the mobile device
for completely loading a web app.

RQ2

The dependent variables are shown in Table 2. They function as
an objective evaluation of the impact of the Critical CSS technique
on energy consumption and run-time performance of mobile web
apps. To measure the loading time, first paint and first contentful
paint the PerfumeJS plugin14 in AndroidRunner is used. To measure
the energy consumption the Trepn plugin15 is used.

3.4 Experimental Hypotheses
In this research, we aim to reason about the impact of the imple-
mentation of the Critical CSS technique, on each of the dependent
variables in Table 2. As the browser has been identified as a poten-
tial blocking factor, we investigate this impact for each browser
separately.

From the experiment, we calculate population means 𝜇𝑖 𝑗𝑘 with
𝑖 ∈ {fp, fcp, e} each of the dependent variables, 𝑗 ∈ {c, f} each
browser Google Chrome and Mozilla Firefox respectively, and 𝑘 ∈
{0, 1} a boolean indicating whether the Critical CSS technique was
applied to this sample.

For the run-time performance variables fp, fcp we can reasonably
assume that the introduction of the Critical CSS technique only

13https://github.com/addyosmani/critical
14https://github.com/S2-group/android-runner/tree/master/AndroidRunner/
Plugins/perfume_js
15https://github.com/S2-group/android-runner/tree/master/AndroidRunner/
Plugins/trepn

improves on the values of the variables. To this end, we execute
one-sided statistical tests on the hypotheses,

𝐻0,𝑖 𝑗 : 𝜇𝑖 𝑗0 = 𝜇𝑖 𝑗1, ∀𝑖 ∈ {fp, fcp}, 𝑗 ∈ {c, f}
𝐻𝑎,𝑖 𝑗 : 𝜇𝑖 𝑗0 < 𝜇𝑖 𝑗1 . ∀𝑖 ∈ {fp, fcp}, 𝑗 ∈ {c, f}

For the energy consumption variable it is unclear whether the
Critical CSS technique imposes a positive or negative effect. To this
end, we execute two-sided statistical tests on the hypotheses,

𝐻0,𝑒 𝑗 : 𝜇𝑒 𝑗0 = 𝜇𝑒 𝑗1, ∀𝑗 ∈ {c, f}
𝐻𝑎,𝑒 𝑗 : 𝜇𝑒 𝑗0 ≠ 𝜇𝑒 𝑗1 . ∀𝑗 ∈ {c, f}

3.5 Experiment Design
To measure the effect of applying Critical CSS on the dependent
variables, a full 2x2 factorial design is performed in which for each
subject the dependent variables are measured for each combination
of factors. Thus, each web app is served once with and once without
the Critical CSS technique in each selected browser, resulting in
160 runs for a single trial. Collecting energy consumption, first
paint times, first contentful paint times, and loading times can
be inconsistent in the real world. To mitigate this, each trial is
performed 10 times and the results of all 10 trials are saved. To serve
the web app we made use of the Flask16 framework with which the
HTML files can be served locally. This eliminates the possibility
for network related factors to affect the run-time performance or
energy consumption. Furthermore, to ensure that no bias exists in
the order of execution, each web app is randomly served with or
without the Critical CSS technique.

3.6 Data Analysis
The collected data is a collection of numerical values for each de-
pendent variable per subject in each browser and with or without
the treatment applied. This data is then analyzed quantitatively.
Exploration. The collected data is analyzed using descriptive sta-
tistics and boxplots to get an indication for the first paint times, first
contentful paint times, energy consumption, and loading times.
Check for normality. The data is tested to see if it can be approx-
imated as normally distributed for the dependent variables in both
browsers. Testing for normality is initially done using density plots.
After that, Q-Q plots are used which should show a diagonal line
for normally distributed data and any other line for non-normally
distributed data. The Shapiro-Wilk test is also used for the same
purpose. An 𝛼 of 0.05 is used. So, this test should return a p-value
of > 0.05 for normally distributed data and < 0.05 otherwise.
Normality assumed. Should the data be normally distributed,
paired t-tests are used to test if the mean of the differences of the
populations is 0. In this case the two populations are the complete
samples of subjects to which the Critical CSS is either applied
or withheld. The populations are tested for first paint times, first
contentful paint times, energy consumption, and loading times. The
paired t-test also provides information on whether the impact of the
Critical CSS technique is positively or negatively correlated with
the dependent variables. If there is a significant difference between
the two populations according to the paired t-test, Cohen’s d is
used to determine the effect size.
16https://flask.palletsprojects.com/en/2.0.x/

https://github.com/S2-group/android-runner/tree/master/AndroidRunner/Plugins/perfume_js
https://github.com/S2-group/android-runner/tree/master/AndroidRunner/Plugins/perfume_js
https://github.com/S2-group/android-runner/tree/master/AndroidRunner/Plugins/trepn
https://github.com/S2-group/android-runner/tree/master/AndroidRunner/Plugins/trepn
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Normality not assumed. If the data is not normally distributed,
the Wilcoxon Signed Rank test is used to test whether there is a
difference between the populations. With a p-value below 0.05, we
reject the null hypothesis of equal population means. If there is a
significant difference between the populations, Cliff’s delta is used
to determine the effect size.

3.7 Study Replicability
The method, execution and collected data for this research can
be found in the replication package uploaded on Github17. The
replication package can be used to verify the results and conclusions
of this research.

4 EXPERIMENT EXECUTION
The execution of our experiment is divided into three main steps.
Firstly, we prepare the subjects used in this experiment. Then, we
setup the infrastructure for executing the runs. Finally, we run the
experiment and perform the measurement.

4.1 Preparation
To be able to serve the selected web apps locally the Resources-
Saver18 tool will be used, which is available for Google Chrome
and Mozilla Firefox. This tool is capable of locally downloading the
front-end of third-party web apps. For each locally-stored web app,
we manually check whether it is completed and/or contains any
errors. Then, for each saved web app the critical CSS technique is
applied using Critical19. A Python script is written to automate this
process using the Command-line-interface (CLI) version of Critical.
It takes a folder containing the index.html files as input and for each
of those files creates a critical.index.html file. In addition, UTF-8
encoding is enforced on the files due to the nature of our local web
app hosting. The result of this phase is to have, for each subject
of the experiment, a pair of subjects: the original one and the one
where the CSS technique is applied.

4.2 Setup
The goal of the experiment is to measure all the dependent variables
for each of the factor combinations. A visual representation of
the setup of our main experiment is shown in Figure 3. We have
connected our Android device with a Raspberry Pi to charge and
control the device, as well as collect the measures related to the
dependent variables of our experiment. To prevent any connection
issues that may affect the outcome of the experiment, we make sure
to connect the Raspberry Pi to the local network by an Ethernet
cable. The two devices are connected with each other through
a USB cable. Furthermore, we make sure to avoid charging the
Android device during execution. We achieve this behaviour by
programmatically disabling the USB ports from charging during
the runs and enabling it in between the runs.

For orchestrating the execution of all the runs of the experiment,
we use Android Runner [7], a wrapper around Android SDK, An-
droid Debug Bridge (ADB), and MonkeyRunner. Android Runner
is a Python framework that is used for automatically executing

17https://github.com/S2-group/EASE-2022-energy-critical-css-rep-pkg
18https://github.com/up209d/ResourcesSaverExt
19https://github.com/addyosmani/critical

measurement-based experiments on native and web apps running
on Android devices. Android Runner measures the run-time per-
formance metrics, i.e., loading, first paint, and first contentful paint
times via a dedicated plugin. Additionally, the battery power con-
sumption of the Android device is measured by Android Runner via
the Trepn profiler, an accurate widely-used software-based power
profiler for Android apps [8].

Android Device

Huawei Nexus 6P


Browser

Chrome

Firefox

Raspberry Pi

AndroidRunner
Android SDK


ADB

MonkeyRunner

Project Git Repository

PerfumeJS plugin

TREPN plugin

Flask ServerWebsite hosting

AndroidRunner config

Execution Python Scripts

TREPN app

Start experim
ent

USB Connection
Control Device

Receive Measurements

Figure 3: A visual representation of the experiment setup

We control the setting of the independent variables by deciding
which version of each subject must be loaded at each run (i.e., its
original version or the one with the Critical CSS technique applied
to). For this, the Chrome and Firefox browsers need to be installed
on the Android device. The prepared web apps also need to be
hosted for the device to access. To this end, we locally host a Flask
web server on the Raspberry Pi that the device can access. Flask
is a simple web application framework based on Python, it allows
for quick and easy deployment of web apps. To simulate real-world
usage, the network speed of the Raspberry Pi is throttled to 20
megabits per second, which is the typical real-world speed of 4G
LTE 20, using Wonder Shaper 21. Wonder Shaper is a script that can
be used to throttle both upload and download speeds to a certain
value as specified by the user.

4.3 Measurement
At the start of each run, Android Runner will be used to initiate the
experiment. All parameters required for measuring the dependent
variables, as described in Section 3.3, are specified in the config.json
file. run-time performance measures are collected using the Per-
fumeJS plugin of Android Runner, whereas energy is used via its
Trepn plugin.

At the beginning of the each run, the local Flask server is started.
Once started, another Python script is executed which ensures that
each web app is being randomly served once. To minimize the effect
of older data on loading the new web app, the cache of the browser
is cleared before each run. Furthermore, we decided that between
each web app serving, one minute of idle time will be used to ensure
that the battery of the device can charge.

20https://www.4g.co.uk/how-fast-is-4g/
21https://github.com/magnific0/wondershaper

https://github.com/S2-group/EASE-2022-energy-critical-css-rep-pkg
https://www.4g.co.uk/how-fast-is-4g/
https://github.com/magnific0/wondershaper
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Table 3: Descriptive statistics of loading time (lt), first paint (fp), first contenful paint (fcp) in milliseconds, and energy
consumption (e) in Joules

CSS Technique Without Critical CSS With Critical CSS

Browser Chrome Firefox Chrome Firefox

Variable lt fp fcp e lt fp fcp e lt fp fcp e lt fp fcp e

Mean 1743 1456 1495 9.9 1963 1178 1440 18.5 1542 1117 1178 10.5 1745 1204 1081 19.0
Standard Dev 1197 774 784 8.4 1457 596 1231 15.9 1043 531 542 8.3 1333 683 979 15.5
Minimum 272 544 544 0.1 224 315 211 2.1 270 315 454 0.8 249 330 152 2.2
25% Quantile 939 1022 1044 4.9 840 777 625 9.8 765 758 791 5.6 755 766 427 10.0
Median 1482 1359 1401 7.4 1598 1121 1006 13.4 1319 1011 1087 8.0 1322 1069 741 14.9
75% Quantile 1994 1611 1676 11.4 2744 1405 1791 20.5 1863 1262 1293 12.5 2460 1391 1236 21.3
Maximum 8326 6517 6517 50.0 9522 4996 9346 116.8 5443 4089 4089 55.0 5946 4996 5599 91.6

5 RESULTS
The results section is divided into three parts. Firstly, the collected
data is explored to get an initial idea of how the data is distributed.
Secondly, each combination of dependent variables, treatments and,
blocking factors is checked for normality in three steps. Thirdly,
the hypotheses are tested.

5.1 Data exploration
The first step in the data analysis is to further understand our data
by exploration. In Table 3, we show descriptive statistics of each
browser and dependent variable, as well as whether the Critical
CSS technique has been applied.

Looking at the means, we can see that across all subjects apply-
ing the Critical CSS technique improved the run-time performance
but also increased energy usage. We also notice that the standard
deviation is quite high concerning the mean, giving the first in-
dication that this data is not normally distributed since negative
consumption or time values should not be possible.

Additionally, for the Firefox browser with the Critical CSS tech-
nique applied, the mean first paint time is larger than the first
contentful paint time, putting into question the validity of this
data column as first paint should always finish loading before first
contentful paint.

In Figure 4, we show the distribution of loading time, first paint,
first contentful paint times, and the energy usage respectively for
the Critical CSS technique when applied and not applied. The box-
plots appear non-symmetrical and have many outliers which is
another indication that the distribution is not normal. In Section 5.2,
this is formally investigated.

These box plots further support our findings from the descriptive
statistics that the loading, first paint, and first contentful paint times
seem to slightly improve by applying the Critical CSS technique.
In Section 5.3, this is formally investigated across all hypotheses.

5.2 Normality checks
As explained in Section 3.6, testing for normality is an essential step
before testing the hypotheses. Depending on whether the collected

data is assumed to be normally distributed or not, either paired t-
tests or Wilcoxon Signed Rank tests are used. Testing for normality
was done in three steps.
Density plots. Firstly, density plots were made to see if the data
followed a bell curve. Due to the combination of dependent vari-
ables, treatments, and blocking factors a total of 8 density plots,
4 for Chrome and 4 for Firefox, have been constructed using the
collected data. In each density plot, both the Critical CSS applied
and not applied can be seen to compare the differences. The den-
sity plots for Chrome and Firefox can be seen in Figure 5. In these
figures, the difference for each dependent variable along with its
treatment can be seen and easily compared. The density plots for
all combinations do not seem to resemble a bell curve. Thus, it is
unlikely that the underlying data follows a normal distribution.

Note also how these density plots give another indication of
the impact of applying the Critical CSS technique. Most notably,
the energy measurements are fairly similar across both groups, as
well as the first paint time of the Firefox browser. How statistically
significant the other differences are, will be discussed in Section 5.3.
Q-Q plots. Q-Q plots are also made to check the normality of the
obtained data. 16 Q-Q plots have been made using the collected
data and are available in the replication package (see Section 3.7).
Shapiro-Wilk. Finally, the Shapiro-Wilk test was used. The results
of these tests can be seen in Table 4. The values in this table rep-
resent the p-values of the Shapiro-Wilk test. As can be seen in the
table, all p-values are below 0.05. So, according to the Shapiro-Wilk
test, the data is not normally distributed.

Table 4: P-values of the Shapiro-Wilk tests

CSS Technique Without Critical CSS With Critical CSS

Browser Chrome Firefox Chrome Firefox

Loading time < 2.2e-16 3.071e-16 < 2.2e-16 < 2.2e-16
First paint < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
First contentful paint < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Energy usage < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

Conclusion.Combining the above three steps for normality testing,
we can conclude that there is no statistical evidence that the data
comes from a normal distribution.
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Figure 4: Comparison of without and with the Critical CSS Technique applied across all dependent variables

5.3 Hypothesis testing
Since the collected data are not following a normal distribution,
we test our hypotheses using the Wilcoxon Signed Rank non-
parametric test.

Table 5: P-values for all hypotheses and Cliff’s Delta effect
size estimates for each rejected null hypothesis.

Value P-value Wilcoxon
signed rank test Cliff’s Delta

Browser Chrome Firefox Chrome Firefox

Loading time 0.00726 0.0838 -0.120 -
First paint 7.59e-16 0.714 -0.357 -
First contentful paint 2.65e-06 3.97e-06 -0.325 -0.233
Energy usage 0.139 0.959 - -

RQ1: What is the impact of the Critical CSS technique on the
run-time performance of Android mobile web apps?

The run-time performance consists of load time, first paint, and
first contentful paint. The hypothesis test for Google Chrome shows
that for the loading time the null hypothesis can be rejected and
significant evidence to confirm the alternative hypotheses has been
found, meaning that applying the Critical CSS technique leads to
a lower load time for Google Chrome. The effect size is negligible,
indicating that the difference in load times between sites that have
the technique applied versus not applied is small. The p-values for
both browsers testing the first paint are very different, this can
most likely be explained by possible data corruption (explained in
Section 7). However, to maintain valid conclusions, assumptions on
what the results would be without corrupted data can not be made
and it is only based on statistics. Following this reasoning, the null
hypothesis cannot be rejected for the Firefox browser. Nevertheless,
the null hypothesis for the first paint on the Chrome browser is
rejected and the effect size is medium. Therefore, there is significant
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Figure 5: Density plots for Google Chrome and Mozilla Firefox respectively

evidence for the alternative hypothesis and it can be claimed that
applying the Critical CSS technique leads to lower first paint times.
The last run-time performance metric is first contentful paint, for
which on both browsers the null hypothesis is rejected and the effect
size is small. This shows that applying the Critical CSS technique
leads to lower first contentful paint times on both browsers. Overall,
it can be concluded that applying critical CSS to web apps served
to Android mobile devices has a small but positive effect on their
run-time performance.

RQ2: What is the impact of the Critical CSS technique on the
energy consumption of Android mobile web apps?

The results show that for both browsers the null hypothesis
about energy usage can not be rejected. Therefore it is concluded
that applying the Critical CSS technique has no significant impact
on the energy consumption of Android mobile web apps.

In our analysis we have treated the browser as a potential block-
ing factor. Throughout the analysis, we have seen that most results
are consistent across both browsers, except for the unexpected first
paint measurements on Firefox. Further investigation into the exact
cause of that data is needed, but apart from that, there is no reason
to assume that the type of browser should be used as a blocking
factor in future research.
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6 DISCUSSION
For RQ1, we conclude that applying critical CSS to web apps served
to Android mobile devices has a small but positive effect on their
run-time performance. From the perspective of front-end developers,
applying critical CSS to web apps will enhance the run-time perfor-
mance of their mobile web apps on Android. Therefore, depending
on the characteristics of web apps, developers can apply the critical
CSS technique to ensure a fast loading time of the web app.

For browser vendors, it is important to notice that applying the
Critical CSS technique leads to lower first contentful paint times
on both browsers. Thus the browsers may be benefited from the
web apps where critical CSS has been applied to avoid the render
blocking issue on web apps’ initial load.

For RQ2, we further investigate the impact of the Critical CSS
technique on the energy consumption of mobile web apps on An-
droid devices. Our experimental results show that applying the
Critical CSS technique tends to have no significant impact on the
energy consumption of mobile web apps on Android. From the
results for the energy consumption, it is not definitive whether the
Critical CSS technique imposes a positive or negative effect.

From these results, it is concluded that web app developers can
consider applying the Critical CSS technique to web apps in order
to enhance run-time performance for Android devices. The sta-
tistical results show that this run-time performance gain can be
realised with little to no significant costs with respect to energy
consumption. It should be noted that Critical CSS is most likely not
a one-size-fits-all solution and therefore web app developers should
at all times investigate whether applying the technique makes sense
for their application. A potential indication is the amount of content
under the fold of the web app and the size of the corresponding
CSS files. Rendering of web apps is blocked until the CSS files are
requested, received, downloaded, and processed by the browser.
When the CSS files are large or under poor network conditions,
rendering a web application would take time. With critical CSS
techniques, developers can speed up the page rendering time of
their web apps and deliver a fast and smooth experience to the
user who is under poor network conditions or on a mobile network
where high latency is an issue. But critical CSS also has some down-
sides, e.g., it prevents caching CSS in the browser. This means that
the users need to re-download the inlined critical CSS on every
request. Therefore, with critical CSS, loading the first page might
be faster in a newly visited web app, but it might slow down all
subsequent pages or return visits of the previous pages.

7 THREATS TO VALIDITY
The following section discusses various threats that might affect
the validity of this research. For this discussion, we will follow the
classifications described by Cook and Campbell [9].

Internal Validity. The threat of notifications affecting the out-
come has been minimized by disabling the notifications for most
apps that send such notifications, such as the Play Store, Gmail, and
other main applications. During the execution of the experiment
the threats of history, maturation, and selection were mitigated by
randomly selecting the subjects, applying the treatment to each se-
lected subject randomly ten times, and clearing the cache between
runs. This approach should also ensure that certain environmental

factors such as battery charge, time of day, and caching, have the
same effect on each run. However, it might be the case that the
battery charge has had a different effect on the later runs. During
each run, charging the battery was disabled and in between runs
it was enabled again with a time between each run of one minute.
Towards the end of the experiment, it was found that this time was
not sufficiently long to ensure that the battery could completely
charge, resulting in some of the later measurements to be collected
on a non full battery.

Initially we selected 50 web apps from the Tranco list, however
in this study we could consider only 40 of them as subjects of our
experiment. Specifically, after executing the complete experiment
it was found that for nine web apps (i.e., apple.news, bestbuy.com,
cam.ac.uk, etsy.com, eff.org, lazada.sg, opendns.com, theverge.com,
unicef.org) incomplete or no data was collected. To ensure that suf-
ficient data was collected, a new run was executed to collect data
for these missing subjects. For five of these nine missing subjects, a
complete dataset was collected. Two subjects, lazada.sg and thev-
erge.com, could not be served correctly. The exact reason for the
error could not be retrieved from system logs. Most likely a certain
type of encoding error seemed to occur during the experiment. The
other two subjects, opendns.com and bestbuy.com, returned an in-
complete set of measurements and were excluded from the results
to ensure that statistically valid conclusions could be drawn. Fi-
nally, six more web apps (i.e., allaboutcookies.org, asos.com, jhu.edu,
lijit.com, python.org, and zerodha.com) had to be removed due to
one or more zero measurements.

A final threat to the internal validity is the usage of the software
profiler Trepn for energy consumption. By using this plugin we
assume that it correctly measures the energy consumption, but
using a hardware device such as the Monsoon power monitor might
result in more precise and reliable measurement. However, we do
not indicate that this is the case as Trepn has been tested to perform
close to hardware-based power monitors, such as the Monsoon, in
terms of accuracy but this is still a potential oversight [10].

External Validity. To minimize the threats to the external va-
lidity the subjects for this study have been sampled randomly from
the Tranco list. By doing so the selected sample is representative
of the population of most used web apps. Here it should be noted
that applying the critical CSS technique is not necessarily some-
thing that makes sense if one thinks about web apps with a certain
design that loads all content at once, such as Google. Therefore,
the results may not apply to the whole population of web apps,
but the conclusions are applicable for the majority of existing web
apps. Furthermore, this research focused on web apps that had no
prior critical CSS applied. It could be the case that the web apps
that have this technique applied, have done this with a specific
design in mind that enhances the advantages of this technique.
Investigating if there is a difference in run-time performance and
energy consumption for those web apps is beyond the scope of this
research, however, it may be interesting to investigate in the future.

Construct validity. The setup, which was explained in previous
sections, attempted to minimize the effect of external factors on the
outcome of the experiment and, if it could not be mitigated, it was
tried to ensure that the external factor has an equal influence on
each subject. To ensure that network related issues, such as DNS-
lookup, package loss, or any of the many errors that can occur, are
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mitigated a local Flask-server was used to which the HTTP requests
were made. In Section 4.2 we explained how this was mitigated.

Another factor that may have influenced the experiment is the
usage of the local web apps. Here an interesting trade-off has to
be made, namely between the network issues as mentioned above
and simulating the real world. To measure the run-time perfor-
mance of each web app three variables were measured, the load
time, first paint, and first contentful paint. However, after analyzing
the results, it was found that in Chrome, sometimes, both the first
paint and first contentful paint contained the same value, while
in Firefox these values are different. Furthermore, in some cases,
the PerfumeJS plugin returned no first paint value for Firefox and
in other cases, Trepn returned no energy consumption for Google
Chrome. To ensure validity, this data had to be removed. Due to
these differences, it was investigated with a test setup if these errors
are browser specific, or the error may be related to serving the web
apps locally where an HTML page was served with a delayed con-
tent aggregated in JavaScript. In Chrome, this delay was detected,
but Firefox did not return a first paint value. The root of this error
may lay in the fact that the web apps were downloaded and certain
functions or triggers did not execute. Future research might give
more insights into these observed differences. Fortunately, a first
contentful paint value was found each time a web app was served
and, together with the load time, we believe that sufficient data was
gathered to measure the run-time performance.

Conclusion Validity. As can be seen in Section 5.3 most run-
time performance metrics show that the null hypotheses can be
rejected. However, the discussion above challenges these values, as
certain metrics, like the first paint and first contentful paint times,
might have been affected by the different browsers and experiment
setup. Further exploration into the exact workings of the metrics
calculations should give a clearer view of how these results can be
interpreted.

Even in cases that data is not normally distributed, it is possible
to perform the parametric paired t-test. However, in the context of
not normally distributed data, the Wilcoxon Signed Rank test has
larger statistical power to test our hypotheses.

8 CONCLUSIONS
In conclusion, this paper researched the effect of the Critical CSS
technique on Android mobile web apps. We tested 40 web apps with
and without the Critical CSS technique applied on Google Chrome
and Mozilla Firefox for the first paint, first contentful paint, energy
consumption, and loading time. The results of these tests showed
that applying the Critical CSS technique had a medium sized posi-
tive impact on the first paint for Google Chrome and no measurable
impact on first paint for Mozilla Firefox. It also had a small sized
positive impact on the first contentful paint for Google Chrome and
Mozilla Firefox. Finally, the loading times differences for Google
Chrome were negligible and no measurable difference for Mozilla
Firefox. The energy consumption for both Google Chrome and
Mozilla Firefox showed no significant difference between applying
the Critical CSS technique or not. Therefore, depending on the char-
acteristics of the web application, it is advisable for developers to
apply the Critical CSS technique to enhance run-time performance
on Android devices.

Possible future work include replicating the experiment with
web apps for which the Critical CSS technique is expected to have
a significant impact instead of focusing on the Tranco top 1000.
These web apps should have a large portion of their content below-
the-fold, as this content generates CSS that is not in the critical
path. Another approach would be to focus on web apps that already
have applied the critical CSS technique and remove the critical
path from the web app. In this way, it can be tested if applying
the technique has made significant improvements. Additionally, it
would be useful to replicate this research using devices that run on
iOS as it holds a market share of 26.75%22 in the market of mobile
operating systems. If for iOS devices the same conclusions can be
drawn as for Android devices, the vast majority of mobile devices
would benefit from applying the Critical CSS technique. A different
approach to reduce internet traffic and thus likely reducing energy
usage for CSS is the experimental prefers-reduced-data feature23.
However, this feature is currently not supported by any browser.
Nevertheless, a small percentage (3.9%) of CSS developers24 stated
that they have used it so this becomes interesting to experiment
with once the technology matures. Furthermore, in the future, it
will be interesting to investigate how applying the Critical CSS
might impact the energy consumption of Android devices with
different screen sizes.
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