
Investigating the correlation between performance scores and
energy consumption of mobile web apps

Kwame Chan-Jong-Chu†, Tanjina Islam†, Miguel Morales Exposito†, Sanjay Sheombar†, Christian
Valladares†, Olivier Philippot∗, Eoin Martino Grua†, Ivano Malavolta†

†Vrije Universiteit Amsterdam, The Netherlands - {k.chanjongchu | t.islam | m.e.miguel | s.sheombar |
c.m.valladares}@student.vu.nl, {e.m.grua@vu.nl | i.malavolta}@vu.nl
∗GREENSPECTOR, Nantes, France - ophilippot@greenspector.com

ABSTRACT
Context. Developers have access to tools like Google Lighthouse
to assess the performance of web apps and to guide the adoption
of development best practices. However, when it comes to energy
consumption of mobile web apps, these tools seem to be lacking.
Goal. This study investigates on the correlation between the perfor-
mance scores produced by Lighthouse and the energy consumption
of mobile web apps.
Method. We design and conduct an empirical experiment where
21 real mobile web apps are (i) analyzed via the Lighthouse per-
formance analysis tool and (ii) measured on an Android device
running a software-based energy profiler. Then, we statistically
assess how energy consumption correlates with the obtained per-
formance scores and carry out an effect size estimation.
Results. We discover a statistically significant negative correlation
between performance scores and the energy consumption of mobile
web apps (with medium to large effect sizes), implying that an
increase of the performance score tend to lead to a decrease of
energy consumption.
Conclusions. We recommend developers to strive to improve the
performance level of their mobile web apps, as this can also have a
positive impact on their energy consumption on Android devices.
ACM Reference Format:
Kwame Chan-Jong-Chu†, Tanjina Islam†, Miguel Morales Exposito†, Sanjay
Sheombar†, Christian Valladares†, Olivier Philippot∗, Eoin Martino Grua†,
Ivano Malavolta†. 2020. Investigating the correlation between performance
scores and energy consumption of mobile web apps . In Evaluation and
Assessment in Software Engineering (EASE 2020), April 15–17, 2020, Trond-
heim, Norway. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3383219.3383239

1 INTRODUCTION
Mobile users are becoming the largest portion of consumers of
Internet services [1]. By benefiting from the huge improvements
of the mobile browser (e.g., the HTML5 standard provides APIs for
sending push notifications, geolocation, accessing the camera), a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383239

large portion of mobile users is accessing contents and services via
mobile web apps. Mobile web apps are mobile-optimized websites
accessed via the browser apps installed on users’ mobile devices
(e.g., Google Chrome, Apple Safari, Mozilla Firefox), hosted on
remote servers, and accessed via standard protocols (e.g., HTTP)
[2]. Mobile web apps are developed using standard programming
languages such as HTML5, CSS3, and JavaScript, and a single app
can run across different platforms [3], thus mitigating the well-
known mobile fragmentation problem [4], both inter-platform (e.g.,
Android vs iOS) and intra-platform (e.g., being able to properly run
across the plethora of Android devices available today).

Web apps that have a perceived poor performance can affect
profits and can lead to users abandonment, specially on mobile
devices where hardware and connectivity are constrained. Improv-
ing the perceived performance of (mobile) web apps is crucial for
increasing conversion. For example, Pinterest rebuilt their pages
for improving the performance of their web app, realizing a 40%
reduction in perceived wait times, which increased both search
engine traffic and sign-ups by 15% [5]. Today developers have ac-
cess to tools that help them to assess the performance of their web
apps and to guide the adoption of development best practices, e.g.,
Google Lighthouse1, WebPagetest2, sitespeed.io3, etc. However,
unlike performance, ready-to-use tools for measuring the energy
consumption of mobile web apps still have to emerge [4, 6, 7].
Without these tools, overlooking potential energy-related issues
in mobile web apps can lead to the same problems lead by poor
performance, such as users abandonment and low onboarding [8].

The goal of this paper is to investigate on the correlation be-
tween the performance scores produced by one of the most used
tools for performance analysis of web apps (i.e., Google Lighthouse)
and the energy consumption of mobile web apps. To achieve this
goal, we design and conduct an empirical experiment where 21 real
mobile web apps are analyzed in terms of both their performance
level and their energy consumption. We use the Google Lighthouse
analysis tool for evaluating the performance level of the mobile web
apps, whereas we measure energy consumption via Greenspector,
a professional software-based energy profiler for the Android plat-
form. After having collected the measurement data for 525 runs (21
web apps × 25 repetitions each), we statistically assess how energy
consumption correlates with the obtained performance scores and
carry out an effect size estimation.

1https://developers.google.com/web/tools/lighthouse
2https://www.webpagetest.org
3https://www.sitespeed.io

https://doi.org/10.1145/3383219.3383239
https://doi.org/10.1145/3383219.3383239
https://doi.org/10.1145/3383219.3383239
https://developers.google.com/web/tools/lighthouse
https://www.webpagetest.org
https://www.sitespeed.io

EASE 2020, April 15–17, 2020, Trondheim, Norway K. Chan-Jong-Chu et al.

Figure 1: Web-based version of a report produced by Lighthouse

The results of the study unveil a statistically significant nega-
tive correlation between performance scores and the energy con-
sumption of mobile web apps (with medium to large effect sizes).
This study is mainly targeting developers specialized in mobile-
optimized web apps. We support them by providing evidence about
the correlation between performance scores and the energy con-
sumption of mobile web apps running on Android devices. So,
specially in the early phases of a project, if a web app has a good
performance score on mobile devices, then developers can use such
a score as a low-cost alternative for preliminary insights also about
its energy consumption.

The main contributions of this study are: (i) an empirical in-
vestigation on the correlation between performance scores and
energy consumption of web apps running on Android devices; (ii)
a discussion of the obtained results from the perspective of mobile
web developers; (iii) the replication package of the study containing
its results, raw data, and the scripts used to obtain the statistics.

2 STUDY DESIGN
2.1 Goal and Research Question
The goal of this study is to empirically assess to what extent the
scores produced by performance audits correlate with the energy
consumption of web apps running on mobile devices.

The aforementioned goal translates into the following research
question, which will guide the design, conduction, analysis, and
synthesis phases of the whole study: To what extent do performance
scores correlate to the energy consumption of mobile web apps?

The main rationale behind this research question lies in the fact
that today many tools exist for analyzing the performance of web
apps, but there are very few ready-to-use tools supporting develop-
ers in assessing the energy consumption of their web applications.
By answering this research question, we will benefit mobile devel-
opers and researchers in building an evidence-based understanding
about the relationship between performance and energy consump-
tion of mobile web apps. From a practical perspective, answering
our research question can support developers since if a web app
has a good performance score, developers can reasonably expect

low energy consumption without needing to run dedicated, time
consuming, and costly energy measurements. It is important to note
that here we are not advocating to totally discard the possibility
of running energy measurements with dedicated tools (which are
necessary anyway), but rather we are reporting that performance
analysis can be used as a low-cost alternative for getting prelimi-
nary insights about the energy consumption of the analyzed web
apps, early on since the beginning of the development activities.

2.2 The Lighthouse Analysis Tool
In this study we measure the performance score of web apps via
Google Lighthouse V3.0. Lighthouse is used by a large community
of developers for identifying and fixing common problems emerg-
ing in web apps and it has audits for performance, accessibility,
progressive web apps, web development best practices, and search
engine optimization. When analyzing a target web app, Lighthouse
automatically visits it multiple times and collects the metrics the
developer is interested into. While running the audits, Lighthouse
is able to simulate real-world conditions of mobile web apps by
(i) emulating the hardware and the user agent of a mobile device
and (ii) throttling the network speed, so to simulate a lossy 3G
connection where packets can be lost or delayed. After running the
analysis, Lighthouse produces a report with scores pertaining to
each type of audits (e.g., performance or accessibility) and provides
actionable advice for addressing the raised issues.

For what concerns performance, Lighthouse produces metrics
according to the RAIL performance model, which establishes goals
based on human perception [9]. Human perception in the RAIL
model relates to how an application handles four key actions: the
response time to a user’s input, the rendering performance for
animations, optimal idle-time utilization for the sake of responsive-
ness, and load impact on a web app. Figure 1 shows the perfor-
mance metrics produced by Lighthouse after having analysed the
http://www.pathe.nl mobile web app. Specifically:

• First Contentful Paint represents the time when the browser
renders the first bit of content [10];

• Speed Index represents the average time at which visible
parts of the web app are displayed [10];

http://www.pathe.nl

Investigating the correlation between performance scores and energy consumption of mobile web apps EASE 2020, April 15–17, 2020, Trondheim, Norway

• Time to interactive measures how long a web app displays
useful content (see the first metric) and event handlers are
registered for most of its visible elements [10];

• First Meaningful Paint represents the time of the paint after
which the biggest above-the-fold layout change has hap-
pened and web fonts have loaded [10];

• First CPU Idle represents the time when most (but potentially
not all) UI elements of the web app are interactive and it is
able to respond to most user input in a reasonable amount
of time [10];

• Estimated Input latency estimates how long the web app
takes to respond to user input during the busiest 5s window
of page load [10].

By referring to the example in Figure 1, the analyzed web app
performs well in terms of First Contentful Paint (2.4ms), whereas it
has some issues with the other metrics, specially for the Estimated
Input Latency (almost 1 second), meaning that in average a user
can provide input to the web app only after 1 second.

All the metrics described above are combined together into a
single Performance score, whose value can range between 0 and
100. This combined score is defined as the weighed average4 of
all the performance-related metrics ranked over the log-normal
distribution derived from the performance metrics of real web apps
performance data obtained from HTTPArchive [10]. Moreover, the
combined Performance score is further categorized into three levels:
poor, if the web app has a performance score between 0 and 44,
average if its performance score is between 45 and 74, and good
if its performance score is between 75 and 100. The thresholds of
each of those levels have been defined by the Google engineers
working on the Lighthouse project and guide the color coding
strategy for the performance score of the tool (for example, the
combined performance score in Figure 1 is shown in red because
40 is less then 45).

We decided to use Lighthouse since (i) it is open-source and
steadily maintained, thus helping the replicability of the study, (i) it
allows to emulate mobile devices, (iii) it can be easily integrated into
our tool chain because it can be run in batch mode and via Python
and Shell scripts, (iv) among others, it produces performance audits
with useful metrics, and (v) the produced performance metrics
are aggregated into a unique score, which captures the overall
performance level of the analysed web app.

2.3 Subjects Selection
In order to be able to generalize our claims to real-world projects, we
need to build a representative sample of real web apps developed in
the context of real industrial projects (i.e., no toy examples, no demo
web apps, no web apps developed by students or non-professional
developers). The starting point of our selection procedure is the
Alexa Rank, i.e., a dataset containing a list of the most popular
websites according to Alexa Internet, a web traffic analysis com-
pany based in San Francisco and owned by Amazon5. The Alexa
Rank provides the top 1-million websites in the world, ranked via a
combination of metrics such as page views and unique site users,

4The weights are based on heuristics applied by Google engineers and are publicly
available [10]
5http://alexa.com

time-averaged over three-month periods.We choose the Alexa Rank
because (i) it is well known and used in research (e.g., [11, 12]), (ii)
its listed websites are developed by professional developers work-
ing in various companies with different technical/organizational
backgrounds, and (iii) its websites are heterogeneous in terms of
size, used technologies, and front-end frameworks.

Starting from the 1 million entries of the Alexa list, we program-
matically select the top 100 unique web apps, discarding those web
apps whose domain name is different only because of their top-
level domain (e.g., even if the list contains both google.com and
www.google.ru, then it considers the Google web app only once).
Then, we run the Lighthouse analysis in sequence on each of the
100 selected web apps via a dedicated tool called Lighthouse batch
reporter [13], thus generating 100 summary reports containing all
Lighthouse scores of each analyzed web app.

A preliminary analysis of the results produced by Lighthouse on
the 100 web apps reveals that their performance scores are quite
spread, ranging from a minimum of 0.01 (cnn) to a maximum of
1.0 (wikipedia), with a mean (median) of 0.52 (0.57). In order to
ensure that our statistical analysis will consider web apps with
different levels of performance, we do a stratified random sampling
[14] across the 100 previously selected web apps. More specifically,
firstly each of the 100 web apps has been classified according to the
three performance levels defined by Google engineers [15]. Then,
from each of these 3 performance levels (i.e., poor, average, and
good) we randomly select 7 web apps, yielding a total of 21 subjects.
Table 1 reports the selected subjects. The table also shows that
the subjects of this study are quite heterogeneous in terms of size,
making us reasonably confident about the representativeness of
the subjects selected for the study.

2.4 Variables and Hypothesis
The independent variable of this study is the performance level
of the web app as it has been defined in Section 2.3. So, for each
run of the experiment we control and change our independent
variable via the selection of web apps belonging to one of the
< poor ,averaдe,дood > performance levels.

The dependent variable of this study is the energy consumption
of the web app in Joules, while it is being loaded in the mobile
browser. More specifically, energy consumption is computed by (i)
measuring the power consumed by the browser while loading the
currently considered subject (in microwatts), (ii) keeping track of
the profilingTime (in milliseconds) for each run of the experiment,
defined as the difference between the timestamp of the first launch
of the web app in the browser and its time to interactive, and (iii)
applying the following formula for obtaining the amount of energy
consumed by the web app (in Joules).

Enerдy = (
power

106
)W × (

pro f ilinдTime

1000
)s (1)

For what concerns our hypotheses, in order to answer the re-
search question of this study we formulate the following two-tailed
null hypothesis.

H0 : µpoor = µaveraдe = µдood (2)

where µpoor , µaveraдe , and µдood represent the mean energy
consumption of the measured web apps having a poor , averaдe ,

http://alexa.com

EASE 2020, April 15–17, 2020, Trondheim, Norway K. Chan-Jong-Chu et al.

Table 1: Subjects of the study

Web app URL Performance score HTML (Loc) CSS (Loc) JavaScript (Loc)
awsamazon http://www.amazonaws.com 0.13 (Poor) 11642 21519 42225
apple http://www.apple.com 0.45 (Average) 992 34967 45516
ask http://www.ask.com 0.94 (Good) 729 557 11977
china http://www.china.com 0.08 (Poor) 2131 3617 19791
cnn http://www.cnn.com 0.01 (Poor) 44803 866 153037
coccoc http://www.coccoc.com 0.22 (Poor) 1121 16149 154126
ettoday http://www.ettoday.net 0.04 (Poor) 1599 15989 111295
hao123 http://www.hao123.com 0.17 (Poor) 14582 56 25905
instagram http://www.instagram.com 0.69 (Average) 12078 0 83393
microsoft http://www.microsoft.com 0.86 (Good) 3275 94 5548
paypal http://www.paypal.com 0.63 (Average) 991 8995 20302
popads http://www.popads.net 0.94 (Good) 434 553 7253
quora http://www.quora.com 0.59 (Average) 4377 51492 25800
theguardian http://www.theguardian.com 0.43 (Poor) 1337 10785 48699
tianya http://www.tianya.cn 0.52 (Average) 347 1409 7413
twitter http://www.twitter.com 0.48 (Average) 1616 30451 54336
whatsapp http://www.whatsapp.com 0.63 (Average) 20532 44333 129280
xnxx http://www.xnxx.com 0.8 (Good) 4350 10635 11023
xvideos http://www.xvideos.com 0.76 (Good) 5381 25369 23090
yandex http://www.yandex.ru 0.83 (Good) 20125 5054 62952
youtube http://www.youtube.com 0.75 (Good) 25540 12318 163102

or дood performance level, respectively. In other words, the null
hypothesis states that themean energy consumption does not signif-
icantly differ among web apps having different performance levels.
Conversely, the alternative hypothesis is formulated as follows.

Ha : (µpoor , µaveraдe)∨

(µpoor , µдood)∨

(µaveraдe , µдood)

(3)

Intuitively, the alternative hypothesis states that the mean of the
energy consumption significantly differs among web apps having
different performance levels for at least one pair of performance
levels.

According to the above mentioned variables and hypotheses, the
experiment is designed as a 1 factor - 3 treatments experiment [14],
where the factor is the performance level and the three treatments
correspond to the performance levels defined in Lighthouse, i.e.,
poor, average, and good. The energy consumption variable is the
outcome of the experiment. Finally, it is important to note that the
experiment is balanced with respect to its factor since every treat-
ment contains exactly 7 unique web apps, each of them belonging
to the same performance level represented by the treatment.

2.5 Data Analysis
We answer our research question in four phases: exploration, check
for normality and transformations, hypothesis testing, effect size
estimation.
Exploration. In the first phase, we get a first indication about the
obtained energy consumption values via a combination of descrip-
tive statistics, histograms, and boxplots.
Check for normality and transformations. We analyze the dis-
tribution of the measured energy consumption across all subjects

in order to check whether parametric or non-parametric statistical
tests can be applied [14]. Specifically, we check if the energy con-
sumption values are normally distributed via (i) a visual analysis of
Q-Q Plots and (ii) the application of the Shapiro-Wilks statistical
test [16] with α = 0.05. We anticipate that the above mentioned
analyses reveal that energy consumption is not normally distributed.
As suggested in [17], we transform the energy measurement data
in order to explore the possibility of having a normal distribution,
which can potentially lead to higher statistical power. However,
even after applying the squared, reciprocal, and log transformations,
energy measurements are still not normally distributed.
Hypothesis testing. Given the results of the previous steps and the
fact that the energy measurements are continuous and independent
from each other, we apply the Kruskal-Wallis test (with α = 0.05),
i.e., a non-parametric test for testing whether two or more samples
all come from identical populations [18]. The Kruskal-Wallis test
just checks if our 3 treatments come from the same populations. In
order to identify which pairs of Lighthouse performance levels are
significantly different, we apply the Dunn Test as post-hoc analysis
[19]. Also, since we are applying multiple statistical tests, in order to
reduce the chance of Type-I error we correct the obtained p-values
via the Bonferroni p-value adjustment procedure [20], leading to a
final α threshold equal to 0.016.
Effect size estimation. In order to statistically assess the magni-
tude of the differences between the energy consumption of web
apps, we apply the Cliff’s Delta statistical test to each pair of per-
formance levels [21]. The Cliff Delta is a non-parametric effect size
for ordinal variables and it does make any assumptions about the
distributions being compared. The values of the obtained Cliff Delta
measures are interpreted according to the guidelines proposed by
[22].

Investigating the correlation between performance scores and energy consumption of mobile web apps EASE 2020, April 15–17, 2020, Trondheim, Norway

2.6 Study Replicability
For more details on the research method, research execution, and
extracted data, we refer the reader to the replication package of this
study6. The package is made available with the aim of supporting
independent verification and replication of this study. It contains (i)
the Python scripts for performing the subjects selection, (ii) the raw
data containing all the measures collected during the execution of
the experiment, (iii) the R scripts for analysing the experimental
data, and (iv) a detailed guide for replicating the experiment.

3 EXPERIMENT EXECUTION
To measure the energy consumption of the 21 web apps we use
a power and performance profiling infrastructure called Green-
spector7. For each device managed by Greenspector, a calibration
process is run to give a probe trust level. This level takes into ac-
count the stability of the measure and the frequency. In this study
we use an HTC Nexus 9 tablet running Android 7.1.1. The device
is equipped with a 2.3 GHZ Dual Core processor (Denver), 2Gb of
RAM, a Kepler DX1 GPU and a 802.11 a/b/g/n/ac Wi-Fi interface.
Furthermore, the device has a 6700 mAh Lithium-Polymer battery.
For the Nexus 9, the trust level is 8 on 10 (Calibration on a small
range and precise measure). To get a better indication of the en-
ergy consumed by each web app, we consider the reference power
consumption value, provided by Greenspector, which removes the
battery drainage caused by the Android operating system. The ref-
erence power consumption is obtained by measuring the system
with a browser opened on a blank screen.

For orchestrating the execution of all the runs of the experi-
ment we make use of Android Tests developed in UIAUtomator8.
Greenspector is integrated as an API in these tests. Tests are run
with Greenspector Testrunner which permits to communicate using
Android Debug Bridge (ADB9) over Wi-Fi.

In our experiment, Testrunner is executed on a laptop with Linux
Mint 19 Cinnamon 3.8.9, Intel i5-5200U and 16GB RAM. Web apps
are run within the Google Chrome browser (version 54.0.2840.85).
With the laptop connected to the Nexus 9, all the web apps are
automatically loaded by the test in the Google Chrome app running
on the device, while their energy consumption is measured via
Greenspector. Both the laptop and the Nexus 9 run under the same
Wi-fi network with a speed of 100 Mbps. To ensure that the Wi-Fi
conditions do not alter the results of the experiment, the Nexus 9
and the laptop are always placed 5 meters from the Wi-Fi router.
Further, we take special care in keeping the execution environment
as clean as possible, Greenspector Testrunner permit to manage
this environment, specifically: the Nexus 9 is loaded with a clean
installation of the Android OS, it has been configured so to do not
perform any OS updates, Google services have been disabled, all
third-party apps have been uninstalled, a whitelist permit to only
autorize minimum applications, and push notifications have been
disabled as well. In order to take into account the intrinsic vari-
ability of energy measurement, we take the following precautions:

6https://github.com/S2-group/ease-2020-replication-package
7https://greenspector.com/en/
8https://developer.android.com/training/testing/ui-automator
9https://developer.android.com/studio/command-line/adb

(i) the measurement of each web app is repeated 25 times, (ii) be-
tween each run the Nexus 9 remains idle for 2 minutes so to take
into account tail energy usage, i.e., the phenomenon where where
certain hardware components of mobile devices are optimistically
kept active by the OS to avoid startup energy costs [25], and (iii)
the Google Chrome app is cleared before each run so to reset its
cache and persisted data.

4 RESULTS
In this section we report the results we obtained in each of the four
phases of our data analysis: exploration, check for normality and
transformations, hypothesis testing, and effect size estimation.

4.1 Data Exploration
The energy consumption across all 21 web apps ranges between
7.9 Joules and 210.46 Joules, with a mean (median) of 54.51 (40.99)
Joules a standard deviation of 43.84 Joules.

Table 2 shows a breakdown of the mean energy consumption
of each web app. Here it is evident that awsamazon and cnn are
consuming a much higher amount of energy with respect to the
other subject web apps.We canmotivate this observation by the fact
that those two web apps have the highest time to interactive with
respect to all the others (about 27s and 32s respectively, as shown in
Table 2). It is also interesting to note that those two web apps have
the lowest performance score (0.13 and 0.01, respectively), providing
us a first informal indication about the relationship between the
performance score, time to interactive, and energy consumption.

Table 2: Subjects of the study

Web app Duration (s) Platform
CPU (%)

Mean energy
consumption
(J)

awsamazon 26.95945 70.43 193.97
apple 6.92678 62,8 37.67
ask 3.36417 54.94 13.79
china 14.12801 56.90 64.83
cnn 32.48561 53.57 143.07
coccoc 14.36013 49.21 56.07
ettoday 16.07516 65.96 83.96
hao123 12.86212 51.62 54.46
instagram 5.60932 65.71 32.03
microsoft 3.77544 80.11 24.75
paypal 5.06258 60.83 25.30
popads 2.75625 68.08 14.60
quora 7.74541 62.35 45.43
theguardian 13.14062 76.96 98.17
tianya 5.15653 34.87 11.83
twitter 7.37284 72.92 48.28
whatsapp 7.25573 69.67 40.89
xnxx 5.83986 74,22 37.43
xvideos 6.61091 85.75 51.72
yandex 5.07072 79.52 34.91
youtube 6.09105 61.43 30.77

To better understand the behavior of the energy distribution
with respect to the performance analysis produced by Lighthouse,

https://greenspector.com/en/
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/studio/command-line/adb

EASE 2020, April 15–17, 2020, Trondheim, Norway K. Chan-Jong-Chu et al.

Figure 2: Energy consumption per treatment

in Figures 2 and 3 we zoom-in on the energy consumption per
performance level. From the diagrams, we observe that the energy
consumption measurements are very similar for both good and
average, whereas a larger difference is observed when comparing
these results to energy consumed by web apps belonging to the
poor performance level. Moreover, here we can also observe that
the energy consumption values are much more spread when con-
sidering web apps belonging to the poor performance level with
respect to the ones belonging to the other levels.

Figure 3: Performance scores vs energy consumption

Overall, the exploration of the obtained data makes us suspect
that web apps with poor performance tend to also consume more
energy consumption and with higher variability; this phenomenon
may be explained by the longer execution times of the web apps
having poor performance, specially in the cases of awsamazon and
cnn.

4.2 Check for normality and transformations
Figure 4 shows the distribution of the density of the energy con-
sumption across all 21 web apps. Visually this data does not look
normally distributed. For further proof, we produce a Q-Q plot

of the measured energy consumption against a random sample
taken from a normal distribution (see Figure 5). Also the Q-Q plot
confirms that the collected data about energy consumption is not
normally distributed.

Figure 4: Distribution of the density of the energy consump-
tion

Having normally distributed data may allow us to apply para-
metric statistical tests, thus leading to higher statistical power, we
transform the energy measurement data by applying the squared,
reciprocal, and log transformations [17].

In Figures 6 and 7 we observe that both the square and the recip-
rocal transformations exacerbate the already-skewed nature of the
data. Indeed, both histograms are not exhibiting the characteristic
bell-shape curve of a normal distribution and the Q-Q plots do not
provide any indication of having normally distributed data.

When applying the log transformation (see Figure 8), the shape
of the data seems to be close to that of a normally distributed one,
however the Q-Q plot still shows a slight curvature. To get a further
indication, we performe the Shapiro-Wilk test [16] which results in
a p-value of 4.4 ∗ 10−7, thus rejecting the null hypothesis that the
transformed data lies within a normal distribution.

In conclusion, the energy consumption we measured during
the experiment execution is not normally distributed, even when
applying various data transformation operations.

Investigating the correlation between performance scores and energy consumption of mobile web apps EASE 2020, April 15–17, 2020, Trondheim, Norway

Figure 5: Q-Q-plot of the energy consumption

Figure 6: Squared transformation for energy consumption

4.3 Hypothesis testing
The application of the Kruskal Wallis test produces a p-value of
2.2∗10−16, therefore allowing us to reject the null hypothesis stating
that the energy consumption measures at each performance level
come from identical populations. This result provides evidence that

Figure 7: Reciprocal transformation for energy consump-
tion

Figure 8: Log transformation for energy consumption

web apps belonging to different performance levels have different
energy consumptions.

Following, we apply the Spearman’s rank correlation test [23]
to asses the correlation between the performance score and energy
consumption of the web apps. We obtain a negative correlation
value of -0.69 for energy consumption w.r.t. performance, which
infers that the energy consumption of the considered web apps
increases as the performance score drops.

In light of these results we perform a pairwise comparison using
the Dunn test [19] (with Bonferroni correction). The resulting p-
value for the good-poor pair is 3.70∗10−56, whereas the average-poor
pair obtained a p-value of 8.39 ∗ 10−40. The same can be concluded
when considering the good-average pair, as the resulting p-value
is 2.23 ∗ 10−2. These results show clear significance between the
three pairs, therefore providing evidence about the fact that web
apps belonging to different performance levels (as indicated by
Lighthouse) consume a significantly different amount of energy,
when running in the Google Chrome browser in Android.

EASE 2020, April 15–17, 2020, Trondheim, Norway K. Chan-Jong-Chu et al.

4.4 Effect size estimation
As a follow-up to our tests, we investigate on the effect size in
the context of the results of our Dunn tests. To do so, we apply
the Cliff’s delta measure [21]. A large effect size, i.e.,-0.95 and -
0.94, is found when considering the good-poor and the average-poor
pairs. Differently, a small effect (i.e.,-0.22) size is obtained when
considering the good-average pair.

Figure 9: Density curve for energy consumption

To further support the results found with the application of
the Cliff’s delta measure, in Figure 9 we show how the density of
the values of energy consumption varies among the Lighthouse
performance levels. We observe that the differences between the
poor performance level and the other two levels is indeed large,
whereas the differences between the average and good levels is
much smaller (but still present).

5 DISCUSSION
From the results of the statistical tests performed in the previous
section we can elaborate on our research question. The outcome of
the Kruskal Wallis test shows that we can reject our null hypoth-
esis. Therefore, we can say that there is a statistically significant
difference in the energy consumption of web apps belonging to
different performance levels.

The application of the Dunn’s test shows that there is a sig-
nificant difference also between pairs of performance levels (i.e.,
good-average, good-poor, average-poor). Moreover, the test shows
that the difference in energy consumption of web apps with poor
performance levels is quite relevant and the difference between
good and average is also quite distinctive.

Finally, to evaluate the degree of overlap between two distribu-
tions of performance levels, we apply the Cliff’s delta effect size
measure. This yields a large effect size between good-poor and
average-poor performance levels, while it results in a medium ef-
fect size for good-average web apps, which is still a significant value
and therefore cannot be negligible. Looking into the differences in
effect size, we can safely deduce that there are diminishing effects
as web apps become better in terms of performance.

The performance scores produced by Google Lighthouse can
be used by developers as an indication of how much energy a

certain web app may consume. Moreover, according to our experi-
ment setup, developers can achieve large gains in terms of energy
consumption when improving the performance of their web apps
from a poor to an average-good level, while a medium gain can be
achieved when improving the performance of the web apps from
an average to a good level. Nevertheless, according to our empirical
results, performance analysis can be used as a low-cost alternative
for getting preliminary insights about the energy consumption of
the mobile web apps running in Google Chrome on Android, spe-
cially as a low-cost alternative for preliminary insights about their
energy consumption. In any case, if the developer requires precise
and/or advanced analyses of the energy consumption of their web
apps, going with a proper measurement infrastructure and/or using
professional services is still needed. It is also important to note
that the relationship between performance and energy is not yet
fully explored and in some cases better performance scores may not
certainly lead to lower energy consumption (e.g., faster web apps
may consume more CPU power). Again, if the developer needs a
deep assessment of the energy footprint of their web apps, setting
up a dedicated measurement infrastructure is advised.

6 THREATS TO VALIDITY
6.1 External Validity
The population of the subject web apps was chosen from the Alexa
top 1 million web apps in terms of traffic. From that, we randomly
selected 21 out of the 100 most-visited web apps as our represen-
tative sample. We chose to make the selection from such category
in order to (i) be sure that the considered subjects are real-world
web apps developed by professional developers and (ii) guarantee
that the selected web apps would be of interest to a general popula-
tion. The randomization of the selection process allows us to not
introduce biases based on the type of web apps selected.

Furthermore, we utilized a relatively modern device (i.e., an
HTC Nexus 9) with relatively good hardware specifications. Google
Chrome was the mobile browser of choice as it captures 61.77% of
the market share on mobile devices 10. With this choice of tools
we can be reasonably sure to have a realistic experimental setting
that can directly translate into a real world scenario. Nevertheless,
newer devices running newer Android releases may lead to differ-
ent energy measurements; further replications of the performed
experiments can help in mitigating this potential threat to validity.

6.2 Internal Validity
Maturationmight play a role if a trial is repeatedmultiple times over
same object. In order to mitigate this potential threat to validity, we
made sure that each run of the experiment is executed at intervals
of 2 minutes. After each execution, we also clear up the cache of
the web browser.

Moreover, there are several factors that can affect the reliabil-
ity of the measures i.e. brightness of the device, distance to the
router and interference with other processes consuming energy.
We aimed at mitigating those potential threats to validity as much
as possible by setting up a minimal and replicable measurement
infrastructure (see Section 3). Finally, in this study we are collecting

10http://gs.statcounter.com/browser-market-share

http://gs.statcounter.com/browser-market-share

Investigating the correlation between performance scores and energy consumption of mobile web apps EASE 2020, April 15–17, 2020, Trondheim, Norway

energy measures by using a software-based power profiler (i.e.,
Greenspector); this potential source of bias is partially mitigated by
the device-specific calibration step of Greenspector. Future replica-
tions of the experiment using different (hardware) measurement
infrastructures can further mitigate this potential threat to internal
validity.

6.3 Construct Validity
In order to mitigate potential inadequate per-operational explana-
tion of constructs, we defined a priori all the details related to the
design of the experiment (e.g., the goal, research question, variables,
data analysis procedures), before we started any experiment run.
Our experiment is based a single factor (i.e., the performance level
produced by Lighthouse), which is the independent variable of our
experiment design. This may potentially lead to mono-operation
and mono-method biases. We mitigated those potential biases by (i)
considering 21 different subjects in the experiment, (ii) selecting the
subjects via a stratified strategy (7 web apps for each Lighthouse
performance level), and (iii) we executed 25 repetitions for each
subject.

6.4 Conclusion Validity
This kind of threats is about the relationship between treatment
and outcomes of the study. In this study, statistical analysis as-
sumptions have been accounted to minimize the possibility of false
results being reported. Moreover, the majority of the statistical
tests produced p-values far below the 0.05 significance level. To
minimize the error rate of the results, the Bonferroni correction
was adopted to adjust the significance level when applying the
Dunn test. Finally, a complete replication package is publicly avail-
able for independent verification and inspection of each step of the
performed experiment.

7 RELATEDWORK
The literature provides a series of studies targeting either perfor-
mance or energy efficiency in the context of mobile web apps.
For example, Thiagarajan et al. performed an in-depth analysis of
the energy consumption of mobile web browsers [8]. The study
involved the measurement of the energy consumption of 26 web
apps, which have been performed using a hardware multimeter
and a patched version of the Android browser. This experimental
setup allowed them to measure also the energy needed to render
individual web elements (e.g., images, JavaScript files). Based on the
obtained results, the authors provided guidelines for building more
energy-efficient web pages without affecting the user experience.

Malavolta et al. performed an empirical study on the energy
efficiency of service workers in the context of progressive web apps
[24]. The experiment considered the impact of the use of service
workers and the type of network available (2G or WiFi) on the
overall energy consumption of 7 progressive web apps running
on two different Android devices. Their main result is that service
workers do not have a significant impact over energy consumption,
regardless of the network conditions.

Nejati and Balasubramanian carried out an empirical study about
the performance bottlenecks of mobile and Desktop browsers [25].
At the core of their measurement infrastructure lies WProf-M, an

extension of the Android Chromium browser which includes a
software-based performance profiler. Then, they run the experiment
using both web apps belonging to a dedicated experimental testbed
and a set of 200 real-world web apps mined from the Alexa list.
Their results provide evidence about the fact that computation
activities (instead of networking ones) are the main bottleneck in
mobile browsers; in Desktop browsers the result is totally different,
where networking activities are the main bottleneck.

Vesuna et al. carried out a study on how caching impacts the
mobile browser performance [26]. In that study, a dataset of 400
web pages has been used. Among the various results, Vesuna et al.
discovered that in case of a perfect cache hit ratio, the reduction
of page load times on mobile devices is much lower than that on
Desktop setups.

All the above mentioned studies share some methodological and
technical aspects with ours (e.g., parts of the experiment design),
but they all differ in the goal of the experiment since they focus
exclusively either on performance or energy consumption of web
apps, whereas we focus on better characterizing the relationship
between them and how already existing performance analysis tools
like Google Lighthouse can be used as a proxy for energy assess-
ment.

Another interesting line of research related to this study is about
empirical studies where native mobile apps are measured for
better understanding their characteristics in terms of performance
and energy efficiency.

Cruz and Abreu performed an investigation on whether fixing
performance-related code smells in native Android apps also leads
to an improvement in terms of energy consumption [27]. Specifi-
cally, they mined 6 apps from the FDroid repository of open-source
Android apps and identified recurrent performance-related code
smells via the well-know Android Lint static analysis tool. Then,
for each detected smell, the app was manually refactored and a new
version of the app was produced. Finally, a set of automated UI test
cases was developed and executed on the apps while they were
running on a bare-board computer ODROID-XU. The results of the
experiment revealed that performance-related code smells actually
lead to more energy-efficient mobile apps, saving up to an hour of
battery life. Even though it focusses on native Android apps, this
result is in line with the findings of our study and confirms that in
Android performance measurement can be seen as a good proxy
for energy consumption.

Similarly to the previous study, Palomba et al. investigated on
the impact of code smells on the energy consumption of native
Android applications [28]. This study has a larger scale and involves
a set of 60 real Android apps belonging to the dataset built by
Choudhary et al. [29]. For the detection of code smells they rely
on aDoctor, a code smell detector developed by the same research
group and able to extract structural properties from the source
code of Android apps to detect instances of code smells like durable
wakelock, leaking thread, slow loop [30]. Energy profiling is based
on Petra, a software-based tool that is able to estimate the energy
consumed by Android apps at the method level [31]. The results of
this study unveil that the some code smells have a strong impact on
the energy efficiency of source code methods. Moreover, it emerged
that refactoring code smells is a key activity to improve energy
efficiency of Android apps.

EASE 2020, April 15–17, 2020, Trondheim, Norway K. Chan-Jong-Chu et al.

Gottschalk et al. investigated the energy impact of refactoring 5
code smells from 2 Android apps [32]. Identified smells were related
to mobile energy consumption, i.e., targeting 3rd-party advertising
and management of specific mobile resources (Wifi, GPS, display).
The impact evaluation of the smell shows that most refactorings
seem to reduce energy consumption, albeit with varying figures
(from 5 to 30%).

Finally, Rodriguez et al. [33] investigate the energy impact of
refactoring 2 smells (namely, God Class and Brain Method) from 3
Android software applications. Authors conclude there is a trade-off
between quality of design (hence amount of refactored code smells)
and energy efficiency.

Differently from the studies above, our study targets web apps
running on standardmobile browsers, instead of focussing on native
apps directly running on the Android OS. Involved technologies are
totally different, thus potentially leading to totally different results.
Interestingly, both our study and the mentioned ones confirm the
tight relationship between performance and energy consumption
in the Android platform. Also, from both our study and the other
studies on native apps it emerged that the relationship between
performance and energy consumption is not predictable in all the
cases, calling for further studies in this research area.

8 CONCLUSIONS
In this article we study the relation between the performance score
given by the Lighthouse analysis tool and the energy consumption
of mobile web apps. To do so, we designed a controlled experiment
involving 21 real third-party web apps. Our results show a signifi-
cant negative correlation between the performance score and the
energy consumption of a mobile web app. Overall, we can state
that the performance analysis tools like Lighthouse can be used
as proxies for energy consumption. In addition to provide perfor-
mance score, Lighthouse provides also guidance on how to improve
critical performance aspects of web apps. We therefore recommend
developers to use Lighthouse development milestones in order to
improve the web app’s performance. In doing so, developers will
increase also the likelihood of lowering the energy consumption of
their web apps, as showed by this study.

For future work, our study will be extended by performing an
analysis including each of the audits used to give the aggregated
performance score in Lighthouse. This would make it possible
to determine which audit affects more the energy consumption.
Moreover, we are planning to replicate the experiment by using
additional performance analysis tools and metrics so to improve
the generalizability of our findings.

REFERENCES
[1] Statscounter, “Desktop vs mobile vs tablet market share worldwide,” GlobalStats,

Tech. Rep., August 2018. [Online]. Available: http://gs.statcounter.com/platform-
market-share/desktop-mobile-tablet

[2] I. Malavolta, “Beyond native apps: web technologies to the rescue!(keynote),” in
Proceedings of the 1st International Workshop on Mobile Development. ACM,
2016, pp. 1–2.

[3] “Native, Web or Hybrid Mobile-app Development,”White paper, IBM Corporation,
April 2012, document Number: WSW14182USEN.

[4] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in mobile app
development,” in International Symposium on Empirical Software Engineering and
Measurement. IEEE, 2013, pp. 15–24.

[5] V. A. . J. C. Sam Meder. (2017, March) Driving user growth with performance im-
provements. [Online]. Available: https://medium.com/@Pinterest_Engineering/

driving-user-growth-with-performance-improvements-cfc50dafadd7
[6] G. Pinto and F. Castor, “Energy efficiency: A new concern for application

software developers,” ACM, Tech. Rep., 2018. [Online]. Available: http:
//gustavopinto.org/lost+found/cacm2017.pdf

[7] M. Nagappan and E. Shihab, “Future trends in software engineering research for
mobile apps.” in FOSE@ SANER, 2016, pp. 21–32.

[8] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh, “Who killed
my battery?: analyzing mobile browser energy consumption,” in Proceedings of
the 21st international conference on World Wide Web. ACM, 2012, pp. 41–50.

[9] M. K. . A. O. . K. B. . J. Miller. (2018, August) Measure performance with the rail
model. [Online]. Available: https://developers.google.com/web/fundamentals/
performance/rail

[10] Google. (2019, February) Lighthouse scoring documentation. [Online]. Available:
https://github.com/GoogleChrome/lighthouse/blob/master/docs/scoring.md

[11] S. Mahajan, N. Abolhassani, P. McMinn, and W. G. Halfond, “Automated repair
of mobile friendly problems in web pages,” in Proceedings of the 40th International
Conference on Software Engineering. ACM, 2018, pp. 140–150.

[12] F. S. Ocariza Jr, K. Pattabiraman, and B. Zorn, “Javascript errors in the wild:
An empirical study,” in 22nd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2011, pp. 100–109.

[13] (2018, october) Lighthouse batch reporter. [Online]. Available: https://www.
npmjs.com/package/lighthouse-batch

[14] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. Springer Science & Business Media,
2012.

[15] Google. (2018) Lighthouse v3 scoring guide. [Online]. Available: https:
//developers.google.com/web/tools/lighthouse/v3/scoring#perf-scoring

[16] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete
samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[17] S. Vegas, “Analyzing software engineering experiments: everything you always
wanted to know but were afraid to ask,” in Proceedings of the 39th International
Conference on Software Engineering Companion. IEEE Press, 2017, pp. 513–514.

[18] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,”
Journal of the American statistical Association, vol. 47, no. 260, pp. 583–621, 1952.

[19] O. J. Dunn, “Multiple comparisons among means,” Journal of the American statis-
tical association, vol. 56, no. 293, pp. 52–64, 1961.

[20] C. Bonferroni, “Teoria statistica delle classi e calcolo delle probabilita,” Pubbli-
cazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze,
vol. 8, pp. 3–62, 1936.

[21] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal questions.”
Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[22] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical approach.
Lawrence Erlbaum Associates Publishers, 2005.

[23] Spearman Rank Correlation Coefficient. New York, NY: Springer New York, 2008,
pp. 502–505. [Online]. Available: https://doi.org/10.1007/978-0-387-32833-1_379

[24] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirović, “Assessing the
impact of service workers on the energy efficiency of progressive web apps,” in
Proceedings of the 4th International Conference on Mobile Software Engineering
and Systems. IEEE Press, 2017, pp. 35–45.

[25] J. Nejati and A. Balasubramanian, “An in-depth study of mobile browser per-
formance,” in Proceedings of the 25th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, 2016,
pp. 1305–1315.

[26] J. Vesuna, C. Scott, M. Buettner, M. Piatek, A. Krishnamurthy, and S. Shenker,
“Caching Doesn’t Improve Mobile Web Performance (Much),” in 2016 USENIX
Annual Technical Conference (USENIX ATC 16). USENIX Association, 2016.

[27] L. Cruz and R. Abreu, “Performance-based guidelines for energy efficient mobile
applications,” in Mobile Software Engineering and Systems (MOBILESoft), 2017
IEEE/ACM 4th International Conference on. IEEE, 2017, pp. 46–57.

[28] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “On the
impact of code smells on the energy consumption of mobile applications,” Infor-
mation and Software Technology, vol. 105, pp. 43–55, 2019.

[29] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation for
android: Are we there yet?(e),” in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2015, pp. 429–440.

[30] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “Lightweight
detection of android-specific code smells: The adoctor project,” in 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2017, pp. 487–491.

[31] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. De Lucia,
“Petra: a software-based tool for estimating the energy profile of android applica-
tions,” in Proceedings of the 39th International Conference on Software Engineering
Companion. IEEE, 2017, pp. 3–6.

[32] M. Gottschalk, J. Jelschen, and A. Winter, “Saving energy on mobile devices by
refactoring,” in EnviroInfo, 2014, pp. 437–444.

[33] A. Rodriguez, M. Longo, and A. Zunino, “Using bad smell-driven code refactorings
in mobile applications to reduce battery usage,” Simposio Argentino de, 2015.

http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://medium.com/@Pinterest_Engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
https://medium.com/@Pinterest_Engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
http://gustavopinto.org/lost+found/cacm2017.pdf
http://gustavopinto.org/lost+found/cacm2017.pdf
https://developers.google.com/web/fundamentals/performance/rail
https://developers.google.com/web/fundamentals/performance/rail
https://github.com/GoogleChrome/lighthouse/blob/master/docs/scoring.md
https://www.npmjs.com/package/lighthouse-batch
https://www.npmjs.com/package/lighthouse-batch
https://developers.google.com/web/tools/lighthouse/v3/scoring#perf-scoring
https://developers.google.com/web/tools/lighthouse/v3/scoring#perf-scoring
https://doi.org/10.1007/978-0-387-32833-1_379

	Abstract
	1 Introduction
	2 Study Design
	2.1 Goal and Research Question
	2.2 The Lighthouse Analysis Tool
	2.3 Subjects Selection
	2.4 Variables and Hypothesis
	2.5 Data Analysis
	2.6 Study Replicability

	3 Experiment Execution
	4 Results
	4.1 Data Exploration
	4.2 Check for normality and transformations
	4.3 Hypothesis testing
	4.4 Effect size estimation

	5 Discussion
	6 Threats To Validity
	6.1 External Validity
	6.2 Internal Validity
	6.3 Construct Validity
	6.4 Conclusion Validity

	7 Related Work
	8 Conclusions
	References

