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ABSTRACT
Evaluating the performance of Microservices Architectures (MSA)
is essential to ensure their proper functioning and meet end-user
satisfaction. For MSA performance analysts, one of the most chal-
lenging tasks is to determine the cause of any deviation of relevant
metrics from the specified range.

We introduce CAR-PT (CAusal-Reasoning-driven Performance
Testing), a model-based technique for workload generation de-
signed for the performance testing of MSA. CAR-PT leverages
causal reasoning to effectively explore the space of operational
conditions, with the goal of identifying those that lead to perfor-
mance issues. Preliminary results show that CAR-PT is effective in
generating configurations for discovering performance issues of an
MSA.
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1 INTRODUCTION
Performance testing is a very challenging task when testing Mi-
croservices Architectures (MSA) - today a very popular software
architectural style [1]. Indeed, many factors can impact MSA per-
formance, including the deployment environment [2] and the users’
behavior in operation [3, 4].

This paper proposes a testing technique for finding the condi-
tions that cause performance issues in MSA. The technique, called
CAR-PT (CAusal-Reasoning-driven Performance Testing), is based
on causal discovery followed by causal inference [5]. These are
used to drive the model-based generation of a workload for MSA
performance testing. The aim is to provide automated support to
performance engineers in a relevant activity, namely to “determine
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the cause of any deviation in the counter values from the specified
or expected range (e.g., response time exceeds the maximum re-
sponse time permitted by the service level agreements or memory
usage exceeds the average historical memory usage)” [6]. This is
achieved by simulating workloads that are both effective in unveil-
ing performance issues and representative of actual workloads.

Starting from historical data (e.g., provided by monitoring tools),
CAR-PT first automatically extracts a causal model capturing the
cause-effect relationships between performance-related variables
of the system (e.g., resources usage, response time, etc.); then, the
model is queried to find the most critical configurations from the
performance point of view.

2 RELATEDWORK
2.1 Performance assessment

Performance testing. Testing is one of the most common solu-
tions for performance assessment for service-based systems [7]. A
test is typically a workload configuration aiming to unveil perfor-
mance issues of the system under test. Barna et al. [8] propose a
framework to generate workloads by exploring the settings caus-
ing the wrong behavior for software and hardware components
of transactional systems. Several studies propose techniques for
automatic test generation for performance testing. Some of them ex-
ploit symbolic execution [9–11]. Han et al. [12] focus on automatic
dictionary-based input generation for performance bug tracking.
Camilli et al. [3] propose MIPaRT for integrated performance and
reliability testing, where workloads are automatically generated by
setting the workload intensity and the behavior mix, describing the
expected and unexpected behavior of the users.

Performance prediction. Many techniques have been proposed to
predict the performance of cloud applications. Bertot et al. proposed
a framework for the execution time and cost prediction ofworkloads
[13].Wang et al. propose CAPT[14] for performance testing of cloud
applications which relies on a smart test oracle aiming to predict the
performance of CPU and memory-intensive applications. Gambi et
al. [15] propose a controller using continuous learning to predict
service performance under different workloads.

This work exploits a performance prediction approach based on
causal models for the generation of performance-critical workload
configurations. Causality, more specifically causal structure discov-
ery, has been used in microservices for root cause analysis [16], in
which the authors showed how such algorithms can capture the
causal relations between performance-related variables. Our aim is
to exploit the causal relations to generate critical configuration.
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Figure 1: The CAR-PT workflow

2.2 Test generation with causal reasoning
A few causality-based testing techniques have been developed for
test generation. Oh et al. [17] perform mutation testing by lever-
aging causal program dependency analysis to discover the causal
structure of the SUT and ultimately to sample effective mutants.
Similarly, Clark et al. [18] use causal inference to automatically
generate metamorphic relations, which usually require domain ex-
pertise and human input. They observed that metamorphic testing
is fundamentally a causal task: apply transformations to input and
evaluate the effect on the output. Giamattei et al. [19] also recognize
software testing as a causal reasoning problem and reformulate the
task of test case generation based on causality. The authors describe
RBST (Reasoning-based Software Testing), a framework to perform
interventions on a causal model to generate a set of hypothetical
tests, from which only the “best” ones with respect to the testing
objective are executed.

In this work, we propose the use of causal reasoning for test
cases generation in the context of performance testing.

3 THE CAR-PT TECHNIQUE
Figure 1 shows the workflow of the proposed technique. The steps
include the discovery of the causal structure (from which a causal
model is built) (Sec. 3.1), used to generate failure-prone configura-
tions (Sec. 3.2); the configuration is the input of the actual workload
generation (Sec. 3.3).

3.1 Causal model generation
A causal model is a representation of cause-effect relationships
between a set of variables. One of the most commonly used type of
models is the Structural Causal Model (SCM), which is a Directed
Acyclic Graph (DAG) G = (𝑿 , E), where nodes ∈ 𝑿 are random
variables and edges ∈ E capture the causal relationships between
them. The relationships are described as a collection of structural as-
signments (i.e., structural equations)𝑋𝑖 := 𝑓𝑖 (𝑃𝑎(𝑋𝑖 ),𝑈𝑖 ) that define
the (endogenous) random variables𝑋𝑖 as a function of their parents
𝑃𝑎(𝑋𝑖 ) and of (exogenous) independent random noise variables 𝑈𝑖 .
They can be manually built by domain experts or automatically de-
rived from observational data by causal discovery algorithms. These
algorithms still allow experts’ knowledge to guide the generation,
by feeding them a “prior knowledge”, namely a set of constraints
specifying mandatory/prohibited relationships between variables.
For our experiments, we prohibit every incoming edge to input
variable. This is because these variables are manipulated by the
proposed technique and, therefore, are not causally affected by any
other variable.

Table 1: Extract of the dataset used

user spawn
size load rate REQ/s_s0 RT_s0 CPU_s0 MEM_s0
1 uniform 1 2.8 6.5 6.6 62.3
1 unbalanced 1 10.9 5.7 18.6 90.3

1 randomly
balanced 1 2.5 6.4 5.7 108.0

RT: response time; MEM: Memory consumption

We use various causal discovery algorithms to build the DAG
and an automatic tool, DoWhy.gcm [20], to assign and fit the causal
mechanisms (the above structural function 𝑓𝑖 of an SCM) for each
edge in the causal graph. The assignment compares a linear, poly-
nomial, and gradient boost model and selects the best-fitting one.
These steps (i.e., causal discovery and model fitting in Figure 1) con-
stitute the causal model generation phase. They require a dataset
as input, that we build from the execution of various nominal work-
loads (an excerpt is in Table 1).

3.2 Configuration generation
Similarly to Camilli et al. [3], we define a configuration as a triple
<users size, load, spawn rate>, where:
• The users size is the number of users simultaneously interacting
with the system (sending requests).

• The load defines how the users interact with services. This be-
havior is represented by an invocation matrix where each cell
represents the probability the users will send a request to the
service on the column after a request to the service on the row.
We consider three types of load:
– uniform: users send requests to all the services sequentially;
– unbalanced: a service has a higher probability of receiving a
request, namely the load is unbalanced toward one service;

– randomly balanced: the invocation matrix is randomly gen-
erated, the load is balanced; each service 𝑠 ∈ 𝑆 has the same
probability 1

|𝑆 | of being called.
• The spawn rate is the rate to spawn users (number of users per
second).
An example of an invocation matrix is shown in Table 2.

Table 2: Example of invocation matrix: probabilities of invo-
cation (of the service on the row to service on the column)

s0 s1 s2
s0 0 1 0
s1 0.50 0 0.50
s2 0.50 0.25 0.25
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An example of configuration is <8, randomly balanced, 2>, mean-
ing that at most 8 concurrent users, with 2 users spawning every
second (𝑢𝑠𝑒𝑟𝑠 × 𝑠𝑝𝑎𝑤𝑛 𝑟𝑎𝑡𝑒), send requests to each microservice
according to the invocation matrix in Table 2.

The configurations are generated by querying the causal model
through interventions. An intervention on the causal model con-
sists in setting the values of a set of variables (i.e., in our case the
variables describing the configuration) in order to see the effect on
other variables of interest (i.e., performance indicators: response
time, memory consumption, CPU). We run interventions iteratively
through DoWhy.gcm [20] by gradually changing the users size (set-
ting spawn rate and load) until the model prediction does not exceed
a threshold in one of the performance indicators for the specified
service(s). For instance, a tester may ask for how many users are
needed to trigger a response time issue for the microservice 𝑠0. The
model is queried to predict the effect of increasing the number of
users on 𝑠0 response time until the threshold is exceeded.

3.3 Workload generation and monitoring
The generated configuration is given as input to locust in order to
generate the actual workload. locust is configured with a locustfile
where the tester defines the users’ behavior and the operational
profile. Users are modeled as a Markov chain [3] where each state
corresponds to a request. The arcs connect the states with a weight
representing the probability of executing a request given the previ-
ous one. Requests are defined by the tester based on the MSA APIs,
and the weights can be derived from historical data or the tester’s
expectation of the user’s behavior in operation.

During the workload execution, <the requests rate, response time,
CPU consumption, memory consumption> are collected for each
service. The first twometrics are collected by locust and the second
ones by Dockerstats.

3.4 Performance evaluation
The detection of performance issues implies the computation of
thresholds, which define the nominal/correct behavior of the system
under test. The ground truth is built by running an ideal workload
with a single user, and by monitoring the variables of interest
(e.g. response time, CPU, memory usage). Thresholds are defined
according to ref. [2] (scalability thresholds) as 𝜏𝑋 = `𝑋 + 3 · 𝜎𝑋 ,
where 𝑋 is the variable of interest, and `𝑋 and 𝜎𝑋 are its mean and
standard deviation over past executions. A performance issue is an
execution where thresholds are exceeded for at least one variable
of interest.

4 EXPERIMENTATION
The preliminary experiments consist of two phases. First, we an-
alyze the performance of various causal discovery algorithms in
generating a configuration. Then, we show how CAR-PT works
on a simulated MSA. For simulating an MSA we consider µBench
[21], a tool for benchmarking cloud/edge computing platforms that
run microservice applications. It allows to configure custom mi-
croservice meshes, where each microservice is configured with a
specific stressing function (CPU, MEM, disk, no stress/idle). For
our experiments, we generate a simulated system with a random

service mesh composed of 10 services, each one with a random
stressing function.

Each experiment is repeated five times and lasts three minutes.
There is a two-minute pause between two experiments to avoid
carryover effects (i.e., consecutive runs influencing each other, e.g.,
in terms of CPU and RAM). During the execution, a dataset is built
with data gathered by locust and Dockerstats, as described in
section 3.3. On this dataset, we ran causal discovery algorithms.

For selecting the causal discovery (CD) algorithm and configur-
ing it, we address the following Questions (Q):

• Q0: Which is the best-performing CD algorithm in predict-
ing anomalies?

• Q1: Does prior knowledge improve performance?
• Q2: How does performance vary if we consider one model
per performance metric or one model for all metrics?

• Q3: How does performance vary by changing theminimum
confidence required for a causal relation identification?

Q0.We compare the models generated by four CD algorithms, by
evaluating the ability of predicting the number of users required to
trigger a performance issue on these models. The algorithms are
dLiNGAM[22], DAGMA-LINEAR[23], DAGMA-MLP[23] and DAG-GNN[24].
The configurations are generated as a capacity test, i.e., by con-
stantly increasing the number of users until the threshold is ex-
ceeded. This is done for each service-metric pair (10 services, mon-
itored on three metrics: response time, CPU, memory consumption)
for all combinations of load (3 levels) and spawn-rate (3 levels) – i.e.,
on 90 configuration per metric. We compute precision (as ratio of
correct anomaly predictions to the number of anomalies predicted
by the model) and recall (as ratio of correct anomaly predictions to
the number of real anomalies).

For Q1, we consider the best causal discovery algorithm from
the previous question, and tried to enrich it with the following prior
knowledge:

• 𝑇 → 𝑅𝑠 , where 𝑇 is a treatment, i.e., a configuration <users size,
load, spawn rate> used to query the model and 𝑅 is the request
rate for the service 𝑠 . In this case, the configuration is causally
related to the request rate.

• 𝑅𝑠 →𝑚𝑒𝑡𝑟𝑖𝑐𝑠 for all services 𝑠 and for all metrics
• 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒𝑠 → 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒𝑠′ if 𝑠′ → 𝑠 in the service mesh
(i.e., 𝑠 is called by 𝑠′).

• 𝐶𝑃𝑈𝑠 → 𝐶𝑃𝑈𝑠′ if 𝑠 → 𝑠′ in the service mesh
• 𝑚𝑒𝑚𝑜𝑟𝑦𝑠 →𝑚𝑒𝑚𝑜𝑟𝑦𝑠′ if 𝑠 → 𝑠′ in the service mesh

The goal is to figure out if this knowledge improves the model.
For Q2, we split the dataset into three subsets, one for each

metric (CPU, response time, memory). For example, the CPU dataset
consists of: the treatments (the configuration triple), the request
rate for each service, and the CPU consumption for each container.

ForQ3, we consider the causal arrow strength [25], i.e., an indirect
measure, based on explained variance, of the confidence in the
existence of a causal relation. We study how performance varies
if we set the minimum strength cut-off value 𝜎 for an edge to be
kept in the model 𝜎 = .1 and 𝜎 = .3, hence obtaining two simplified
models. An edge is cut if its strength is below 𝜎 . The best model
is then executed into CAR-PT by running the entire workflow
described in Section 3.
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Table 3: Q0: Comparison of causal discovery algorithms

Algorithm Metric Precision Recall

dLiNGAM
Response Time 0.524 0.880

CPU 0.989 1
Memory 0.714 0.385

DAGMA-LINEAR
Response Time 0.038 0.200

CPU 0.967 1
Memory 0.743 0.321

DAGMA-MLP
Response Time 0.053 0.211

CPU 0.967 1
Memory 0.444 0.160

DAG-GNN
Response Time 0.095 0.304

CPU 0.967 1
Memory 0.818 0.439

5 RESULTS
Q0. Table 3 shows the results for the compared causal discovery

algorithms. dLiNGAM emerged as the best algorithm for two out of
three metrics: response time and CPU. In the case of response time, it
gives significantly superior precision and recall compared to others.
In the CPU metric, where all algorithms exhibited strong perfor-
mance, it achieved marginally higher values. On the other hand,
concerning Memory, DAG-GNN demonstrated the best performance,
with dLiNGAM ranking third in precision and second in recall. For
the next questions, we opted for dLiNGAM.

Q1. Table 4a shows the results of dLiNGAMwith prior knowledge.
Leveraging prior knowledge significantly enhanced the predictive
performance of the causal model for response time and CPU. The
performance remains unchanged for memory compared to the sce-
nario without prior knowledge. We choose the causal model with
prior knowledge.

Q2. Table 4b shows the results of dLiNGAM applied on a single-
metric dataset. The performance for response time on a single metric
is worse than on thewhole dataset because the relationship between
different types of metrics is not negligible. However, the precision
of the memory metric is greater than in the previous case.

We chose dLiNGAM applied on the whole dataset for the better
results on the response time.

Q3. Table 5 shows the results of simplified models with two min-
imum strength cut-off values (𝜎 = .3 and 𝜎 = .1). The models with
𝜎 = .3 increased the performance of memory prediction precision
keeping the same performance for response time and CPU metrics.
We opt for the simplified causal model with 𝜎 = .3.

Table 4: Performance of dLiNGAM with prior knowledge
(a) Q1: whole dataset

Metric Precision Recall
Response Time 0.679 0.905

CPU 1 1
Memory 0.717 0.507

(b) Q2: single metric

Precision Recall
0.415 0.810
1 1

0.848 0.470

Table 5: Q3: Comparison of two thresholded causal models

Threshold Metric Precision Recall

0.1
Response Time 0.378 0.795

CPU 1 1
Memory 0.830 0.476

0.3
Response Time 0.679 0.905

CPU 1 1
Memory 0.792 0.475

Final model in practice. In the last experiment, we generate three
configurations with CAR-PT and the random baseline, comparing
the number of performance issues discovered. Each configuration
is generated by querying the causal model to give a configuration
with a response time, CPU, and memory issue, respectively. CAR-
PT and the baseline are compared on the generation of user size1:
CAR-PT generates the user size as in Section 3.2, and the baseline
generates a random number between 2 and 30 (30 is the largest
user size in the dataset). Each experiment is repeated five times.

Table 6 shows the percentage of performance issues (PI%) dis-
covered by generators per metric and in total. CAR-PT outperforms
the random baseline in terms of response time, while there is no
difference in CPU and memory.

Table 6: Comparison of CAR-PT and a random generator

Generator Metric PI% PI% total

CAR-PT
Response Time 100%

66.667%CPU 100%
Memory 0%

RANDOM
Response Time 40%

46.667%CPU 100%
Memory 0%

6 CONCLUSION
We presented CAR-PT, a model-based technique for workload gen-
eration in the context of MSA performance testing. The responses to
the questions offer guidance on instantiating CAR-PT, particularly
in the selection of a CD algorithm and best practices for model con-
struction. Preliminary results show that CAR-PT can be effective
in generating configurations for discovering performance issues by
exploiting causal relationships, outperforming the baseline.

Our next goal is to experiment with real-world representative
MSA like TrainTicket [26] and SockShop2, and further investigate
the alternatives to instantiate CAR-PT.
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