
Mining Energy-Related Practices
in Robotics Software

Michel Albonico†, Ivano Malavolta‡, Gustavo Pinto∓, Emitza Guzman‡,
Katerina Chinnappan‡, and Patricia Lago‡

†Technological Federal University of Paraná - UTFPR, Brazil - michelalbonico@utfpr.edu.br
‡Vrije Universiteit Amsterdam, The Netherlands - {i.malavolta,e.guzmanortega,k.p.chinnappan,p.lago}@vu.nl

∓Federal University of Pará, Brazil - gpinto@ufpa.br

Abstract—Robots are becoming more and more commonplace
in many industry settings. This successful adoption can be
partly attributed to (1) their increasingly affordable cost and (2)
the possibility of developing intelligent, software-driven robots.
Unfortunately, robotics software consumes significant amounts of
energy. Moreover, robots are often battery-driven, meaning that
even a small energy improvement can help reduce its energy
footprint and increase its autonomy and user experience.

In this paper, we study the Robot Operating System (ROS)
ecosystem, the de-facto standard for developing and prototyping
robotics software. We analyze 527 energy-related data points
(including commits, pull-requests and issues on ROS-related
repositories, ROS-related questions on StackOverflow, ROS Dis-
course, ROS Answers and the official ROS Wiki).

Our results include a quantification of the interest of roboti-
cists on software energy efficiency, 10 recurrent causes and 14
solutions of energy-related issues, and their implied trade-offs
with respect to other quality attributes. Those contributions
support roboticists and researchers towards having energy-
efficient software in future robotics projects.

I. INTRODUCTION

The intensive use of robots is becoming a successful, com-
monplace story in several industrial sectors like manufacturing,
logistics, delivery, transportation, healthcare [1]. With large
players such as ABB, Siemens, and Mitsubishi, it is estimated
that the revenue generated from the industrial robotics market
worldwide will be 18.25 billion USD in 2025 [2]. One of
the most important reasons for the success of robotics is the
possibility of equipping robots with intelligence [40]. With
intelligent robots, software comes into the picture, becoming
the core aspect in robotics development [31], [14].

One of the key technological enablers for robotics soft-
ware development is the Robot Operating System (ROS), a
communication framework for robotics software modules [45].
ROS is the de-facto standard for developing and prototyping
robotics software. It supports 162 different types of robots
and has a vibrant open-source ecosystem, including 6,096
publicly-available software packages, 9,148 ROS Wiki users,
and 36,901 ROS Answers users [4], [20].

Robotics software can consume substantial amounts of
energy. For example, the automotive industry alone in the U.S.
spends 2.4 billion USD on electric energy annually [11] and
industrial robots in the automotive industry consume on aver-
age 8% of the total electrical energy of assembly lines [34].

In this context, even a slight energy improvement can lead
to great benefits in terms of environmental impact, mission
completion time (e.g., fewer pauses for recharging batteries),
and safety (e.g., a flying drone crashing due to poorly-managed
energy consumption). Even though there is a relatively rich
body of literature on energy efficiency for robotics [50], it is
still unclear how practitioners are dealing with energy-related
aspects in projects developed in real contexts.

The goal of this paper is to characterize the recurrent
practices of roboticists in the field, specifically: (i) to quantify
the interest of practitioners on energy aspects of robotics
software and (ii) to obtain a deeper understanding of the main
causes, solutions, and trade-offs of energy-related issues in
robotics software.

In this work, we apply software repository mining tech-
niques targeting (i) developers’ discussions on StackOverflow
and official technical forums used by ROS developers (e.g.,
ROS Answers) and (ii) the source code, documentation, com-
mit messages, issues, and pull requests in 335 Git repositories
containing real open-source ROS systems [31]. Out of 339,563
potentially-relevant data points1, we systematically curate a
final set of 527 data points where developers discuss, mention,
or consider energy in the context of their ROS systems.
We then employ quantitative and qualitative data analysis
techniques to extract and synthesize roboticists’ practices with
respect to energy; specifically: how much roboticists consider
energy-related issues in their projects, 10 recurrent causes and
14 solutions of energy-related issues, and their implied trade-
offs with respect to other quality attributes like reliability and
performance. The main contributions of this study are:

• a quantification of the interest of practitioners in the
energy aspects of robotics software;

• a taxonomy of the main causes and solutions of energy-
related issues faced by roboticists;

• the identification of the quality attributes considered by
roboticists when facing energy-related issues;

• a manually curated and validated dataset of 527 energy-
related data points in the context of robotics software;

• the complete replication package of the study.

1We use the term data point as the superclass of any type of mined item,
such as a commit message, a GitHub issue, or a discussion on StackOverflow.

ar
X

iv
:2

10
3.

13
76

2v
1 

 [
cs

.R
O

] 
 2

5 
M

ar
 2

02
1



The target audience of this study includes both roboticists
and researchers in green software engineering. Roboticists can
benefit from the taxonomy of energy-related issues by using
the extracted causes as a checklist of the various aspects of
their system to be taken under consideration and by using the
extracted solutions as a catalog of concrete solutions in case
their system suffers from an energy-related issue. Researchers
get an objective characterization of the state of the practice
about energy-related aspects in robotics software. Moreover,
researchers can use the extracted causes and solutions as
a foundation for defining new approaches to automatically
improve the energy efficiency of robotics software.

II. BACKGROUND

The ROS Community - The ROS community is rapidly
growing and especially active; when a developer encounters
a problem, finding solutions and getting help becomes easier
– not only from developers of the ROS platform but also from
other enthusiasts and professionals. The primary communica-
tion channels and resources used in the ROS community are:

i) Stack Overflow and ROS Answers: Q&A websites which
are used as one of the main communication channels for
solving problems;

ii) ROS Discourse: a discussion forum mainly used for
discussing more complex topics and announcing new
projects and updates concerning the ROS community;

iii) GitHub: a repository hosting service where the majority
of ROS packages are hosted at and which provides a Pull
Request (PR) and Issue section of the package repository
where questions and bugs concerning the ROS package
can be discussed, and;

iv) ROS Wiki: a collection of various ROS tutorials, pack-
ages, and libraries.

Every day members part of the ROS community is heavily
involved in the open-source development of publicly available
ROS packages. As of July 2020, there are a total of 16,044
packages published on the official ROS website [20]. Accord-
ing to ROS Community Metrics Report for July 2020 [4], there
are roughly 142,000, 199,000, and 21,400 registered users
respectively for ROS Answers, ROS Wiki, and ROS Discourse.

ROS-based Systems - A ROS-based system is composed
of Nodes which are OS processes that perform computa-
tions [47]. A registered Node can interact with other Nodes
using a publish/subscribe model based on Topics (publish and
subscribe to messages), or using a request/response model
based on Services or Actions (request and receive responses).
A Service is a communication model that operates on the prin-
ciple of synchronous bidirectional communication between
a Service Client that requests data and a Service Server
that responds to requests. Service calls are blocking so they
are typically used for remote procedure calls that terminate
quickly (e.g., simple calculations, querying the state of a
Node) [25]. The Action communication model is used when
the requested task takes a long time to complete and feedback
from the process is needed (e.g., moving the robot).

III. STUDY DESIGN

We designed this study by following known empirical guide-
lines [49][53]. A full replication package is publicly available
for independent verification and replication [6].

A. Goal and Research Questions

The goal of this study is to analyze the ROS software ecosys-
tem for the purpose of quantifying and characterizing the main
causes, solutions, and eventual trade-offs of roboticists’ issues
with respect to their energy efficiency from the point of view of
roboticists and researchers in the context of open-source ROS-
based systems. The goal drives the design of the full study and
leads us to the following research questions.
RQ1 – To what extent do roboticists consider energy con-
sumption in the context of robotics software? By answering
this research question we aim at quantifying the interest in
energy consumption of roboticists (i) over time and (ii) across
different types of robotic systems and capabilities.
RQ2 – What are the main causes of energy-related issues
reported by roboticists? This research question targets energy-
related issues. In this study, energy-related issues are defined
as errors, bugs, faults, or failures affecting the energy con-
sumption of a robotic system, either purposely (e.g., streaming
a high-definition video to the Cloud) or accidentally (e.g., a
software bug leading to unnecessary CPU cycles).
RQ3 – What are the main solutions that roboticists apply or
recommend for solving energy-related issues? This research
question is the counterpart of RQ2. Specifically, RQ3 aims
at identifying and characterizing the most prevalent solutions
either applied or reported by roboticists for solving energy-
related issues.
RQ4 – What are the quality attributes mentioned by roboti-
cists when considering energy-related issues? As ROS-based
systems are becoming more and more large and complex, it
is critical that their software meets quality requirements such
as maintainability, safety, and reliability [31].

B. Dataset Building

Figure 1 gives an overview of the process we followed
for building the dataset for answering our RQs. We con-
sider the following starting data sources: Open-source Git
repositories, Stack Overflow, ROS Answers, ROS Discourse,
and ROS Wiki. For the open-source repositories, we consider
the GitHub, Bitbucket, and Gitlab social coding platforms.
In this context, we reuse an already-existing dataset of 335
repositories containing real and active ROS-based projects
[31]. We locally clone each repository and extract all its
source code comments and markdown files (Code Extraction
in Figure 1). We also mine all issues/pull requests (including
their discussions) and commit messages (Git Extraction in the
figure). For Stack Overflow, ROS Answers, and ROS Discourse
we crawl all questions, their answers, comments, and related
(meta-)data. Since Stack Overflow is not specific to ROS, we
target questions with the ROS tag. For ROS Wiki, we crawl
all its pages and related (meta-)data. All extracted data points
are persisted in a MongoDB database. Since MongoDB is



schemaless (i.e., there are no restrictions on the structure of the
stored data), it simplifies the persistence and querying of our
(highly-heterogeneous) data points. For the sake of space, the
data extractors are detailed in our replication package, together
with their source code and a complete dump of the MongoDB
database [6]. The dataset building activities were carried out in
February-April 2020 and result in 339,563 distinct data points.

Open-source
Repositories

Stack
Overflow

ROS
Answers

ROS
Discourse

Code
Extraction

SO
Extraction

ROSA
Extraction

ROSD
Extraction

Git
Extraction

Extracted Data (339,563 Data Points)

Energy-related
Terms

1) Initial
Search Data Points With

Energy-related
Terms (5,111)

2) False Positives
Removal

3 Researchers
Energy- related
Data Points (527)

1,880 43,672 2,604

ROS
Wiki

ROSW
Extraction

2,54717,165 271,625

Taboo Terms

3) False
Negatives Check

Random Sample
Without Energy-
related Terms (400)

Fig. 1: Overview of the dataset building process.
Figure 1 also illustrates the three phases we follow to select

energy-related data points from our dataset: 1) initial search;
2) false positives removal; and 3) false negatives check.
Phase 1 – In this phase, we select data points that contain
energy-related terms, such as battery, power, energy, sus-
tainability, etc. Despite its simplicity and low computational
requirements, the keyword-based strategy is commonly used
[9] and has been successfully applied in previous studies on
mining software repositories and Q&A platforms about energy
efficiency [13][16][32][36]. In this phase, it is fundamental
to identify the search terms that best fit with the problem at
hand [9]. Two researchers identify the search terms via a semi-
systematic process where they: (i) collect a set of 14 scientific
publications containing a keyword-based search applied in the
context of green software across several domains and different
types of targeted data (see Table I), (ii) extract all the search
terms used in each publication, (iii) merge and adapt the
extracted search terms according to the robotics domain (e.g.,
we merge the “energy efficiency” term used in [35] since
it is dominated by the “energy” term used in [42]). A third
researcher performs a final sanity check of the identified search
terms. The final set of used search terms is:
*battery*, *energy*, *power*, *sustainab*, *green*, *con-
sum*, *efficien*, *drain*, *sleep*, *charg*, *volt*, *wak*,
*watt*, and *joule*

Finally, we query our MongoDB database by consider-
ing the list of energy-related search terms. After an initial
inspection of the obtained search hits, we noticed that we
were having several false positives. For instance, the term
green leads to matches including forms like green LED,
green button, that are clearly out of scope for this study.
To mitigate this threat, two researchers randomly sampled a
subset of the search results and collaboratively identified a set
of combinations of terms that are out of scope, we call them
taboo terms. Examples of taboo terms are coefficient, time
consuming, and green icon. Then, we filter out all the search
results matching with at least one taboo term. This results in
5,111 data points containing energy-related terms. The high
discard-rate in this step is not surprising, but is rather in
accordance with existing research confirming that developers
tend to have limited knowledge of energy efficiency [37].

TABLE I: Studies used for extracting energy-related terms.

Paper Domain Targeted Data
Li et al. [27] Mobile Issues
Swanborn and Malavolta [50] Robotics Literature
Cruz and Abreu [16] Mobile Commits, Issues, PRs
Moghaddam, Lago, and Ban [35] Generic Literature
Matalonga et al. [33] Mobile System Events
Chowdhury and Hindle [13] Generic Commit Messages
Bavota [9] Generic Commit Messages
Moura et al. [36] Generic Commits
Malik, Zhao and Godfrey [32] Generic Stack Overflow
Procaccianti, Lago and Bevini [44] Cloud Literature
Pinto, Castor and Liu [42] Generic Stack Overflow
Procaccianti, Bevini and Lago [43] Cloud Literature
Calero, Bertoa and Moraga [10] Generic Literature
Pathak, Hu and Zhang [38] Mobile Issues, Forum Posts

Phase 2 – In this phase we manually analyze all the
5,111 data points for removing false positives. This phase is
performed systematically and iteratively by three researchers.
In a first iteration, we perform a stratified random sampling
of 398 data points according to their type; specifically, we
randomly sample 50 data points for each type of data point
(i.e., 50 Git commits, 50 Stack Overflow discussions, and so
on). Then, two researchers independently assess whether each
sampled data point is a false positive. We verify the inter-
rater agreement via the Cohen’s Kappa coefficient [?], which
is 0.82, thus resulting in an almost perfect agreement. Then,
we discuss and solve the occurred conflicts with the help of a
third researcher acting as arbiter. Subsequently, we repeat the
same process by considering another random sample of 50 data
points for each type of data data point; this time the Cohen’s
Kappa coefficient increases to 0.84, making us confident about
the objectivity of our manual classification. Based on the good
inter-rater agreement obtained in the first two iterations, one
researcher proceeds to classify the remaining data points, with
the help of another researcher in case of doubts. This phase
results in 527 energy-related data points.
Phase 3 – When performing a keyword-based search, it is
fundamental to minimize the number of false negatives [9],
i.e., data points that do not contain any of energy-related
terms in our list but are about energy. In this context, we are
interested in the data which have not been selected in Phase 1



(339,563− 5,111 = 334,452). Since a manual analysis of all
334,452 is not feasible, we consider a random sample of 400
data points, stratified again according to the 8 types of data
points (50 data points for each type). By considering 400 data
points, we achieve a 95% confidence interval with a 4.9% error
margin (assuming a 50% population proportion). We classified
the 400 by following the same process as in Phase 2. This
process resulted in the identification of zero false negatives,
making us reasonably confident about having an acceptable
number of false negatives in our study.

C. Data Analysis

The selected energy-related data points are analyzed in three
different ways in order to answer the research questions, where
we follow the same strategy to answer RQ2 and RQ3. All the
data analysis is detailed in the remainder of this section.
RQ1 – Firstly, we collect the creation date of each of the
527 data points in our dataset. Then, two researchers conduct
iterative content analysis sessions with open coding [28] to
extract information related to (i) the considered types of robots
(e.g., ground rover, flying drones, industrial arms) and (ii) their
provided capabilities (e.g., vision, navigation, manipulation).
Then, we apply simple summary statistics to answer RQ1
quantitatively.
RQ2 and RQ3 – These research questions are answered by
applying thematic analysis [21], [18], [51]. Thematic analysis
is a qualitative research method for identifying emerging
patterns from a body of knowledge. In our study, the body of
knowledge is the set of 527 energy-related data points, and the
emerging patterns are used to answer RQ2 and RQ3. We chose
thematic analysis because (i) it has been successfully applied
in several previous studies on energy-efficient software, e.g.,
[36], [16] and (ii) the information we extracted from each data
point is strongly dependent on project- and system-specific
characteristics and thematic analysis copes well with context-
dependent data [51], [18]. By following the guidelines reported
in [21], three researchers carried out the thematic analysis
according to the following steps:
1) Familiarisation with the data – The three researchers
carefully inspect all 527 data points to become familiar with
the dataset. When a data point is about concepts/techniques
which are not common or unclear, we study them using either
related scientific literature or online documentation (usually
via the official ROS Wiki).
2) Extracting initial codes – The goal of this step is to
extract descriptive labels from segments of text from each data
point. Examples of extracted labels are: “high modulation
frequency”, “mpeg_server is power consuming”, “land
when battery is low”. We extracted the initial codes in five
main steps. In the first one, we randomly sampled 80 data
points (10 for each type – see Table II) and three researchers
code them in parallel; in the second step, the extracted
codes are largely discussed in order to identify differences
of perspectives and spot potential sources of subjectivity. No
substantial differences were identified in the extracted codes.
In the third step one researcher proceeds with extracting the

codes of the remaining data points, with the help of the other
two researchers in case of doubts. Once all the codes are
extracted, in the fourth step we collaboratively and iteratively
combine codes with the same meaning, resulting in a final set
of 494 unique codes. Finally, in step 5 we group the extract
codes according to the research questions they may answer,
leading to 158 codes related to RQ2 and 307 codes related to
RQ3 (with 24 codes belonging to both groups). Contextually,
we discard 52 codes that are not related either to RQ2 or RQ3.
3) Searching for themes – The goal of this step is to combine
the extracted codes into an initial set of themes. For each
RQ, two researchers navigate through the extracted codes and
organize them into meaningful subsets. Then, for each subset,
a precise theme was formulated. We focused on making the
phrasing of the themes (i) representative of its corresponding
codes, (ii) not overlapping, and (iii) actionable to be readily
usable by roboticists in the field. This activity resulted in a total
of 28 themes for RQ2 (the causes of energy-related issues) and
41 themes for RQ3 (their solutions).
4) Reviewing themes – In this step we go back to the extracted
codes once again in order to rearrange the codes and refine
themes. Here, generic themes are split into more specific
subcategories, others are renamed (when necessary), and codes
are moved from one theme to another (when necessary). While
reviewing the codes, we search for data that supports or refutes
themes. In most cases, we only go back to the extracted codes.
When the extracted codes are not descriptive enough, we go
back to the initial data points. This activity resulted in a total
of 24 themes, 10 themes for RQ2 and 14 themes for RQ3.
5) Defining and naming themes – In this step, two researchers
finalize the name and produce a structured description of each
of the 24 themes. The description of each theme is based on
the data points in our dataset (e.g., a solution described in
a GitHub pull request), the researcher’s experience, logical
arguments, and the scientific literature. Finally, the phrasing
(and semantics) of each theme undergo rigorous scrutiny of
one additional researcher, leading to a further refinement of
the emerged themes.
6) Producing the final report – In this phase, all authors of this
study carefully scrutinize the emerged themes, contextualise
them, and further refine their definitions.
RQ4 – For our last research question, we revisit all 527
data points that have been qualitatively analyzed to answer
RQ2 and RQ3. In this second round of assessment, we revisit
the data points focusing on quality attributes mentioned in
the discussion/code change. We use the quality attributes
defined in the ISO/IEC 25010 standard [5] as the initial set
of codes, which encompasses eight main groups, namely:
Functional Stability, Performance, Compatibility, Usability,
Reliability, Security, Maintainability, and Portability. For each
data point, we verify if there is any mention of these quality
attributes. Ultimately, we conduct content analysis sessions
on the data points mentioning at least one quality attribute
and report the frequency in which each quality attribute is
mentioned contextually to energy, together with a description
of notable/representative examples.



IV. RESULTS

A. Consideration of energy-related issues (RQ1)

Energy-related discussions are rare in the analyzed artifacts.
We discovered 527 (0.002%) energy-related data points out
of our initial dataset of 339,563. The most common types
of energy-related data points were ROS Answers discus-
sions (30.93%), Git commit messages (26.19%), Git issues
(22.01%), and Git pull requests (11.76%).

TABLE II: Number of energy-related data points.

Type of data point All Energy-related Pct.
ROS Answers discussions 43,672 163 30.93%
Git commit messages 218,385 138 26.19%
Git issues 23,214 116 22.01%
Git pull requests 30,096 62 11.76%
Source code 16,069 18 3.42%
ROS Discourse discussions 2,604 17 3.22%
ROS Wiki pages 2,547 12 2.28%
Stack Overflow discussions 1,880 1 0.19%
TOTAL 339,563 527 100%

Table II shows the distribution of energy-related data points
among all considered types of data points. Most of these
data points are associated to ground (36.8%), generic (24.5%),
and aerial (12.5%) robots. Most of these energy-related data
points are associated to robots with full (35.5%), base2 (25%),
and infrastructural (10.1%) capabilities. The most common
energy-related terms in our dataset were *battery* (45.73%),
*power* (15.75%) and *charg* (12.58%). Figure 2 shows the
energy-related data points overtime per robot type in the time
span between 2008-2020. The years 2011 and 2012 showed
considerable more energy-related discussions than the rest of
the considered years. The figure also shows that ground robots
were the most prevalent in these two popular years, albeit their
popularity decreased significantly in the upcoming years.

Fig. 2: Energy-related data points over time per robot type.

B. Main causes of energy-related issues (RQ2)

Out of the 527 energy-related data points, we identified a to-
tal of 109 (20.68%) distinct ones referring to causes of energy-
related issues. Then, we further analyzed those 109 data points
and extracted 10 recurrent themes. For the sake of space,

2Subsystem containing the base components of the whole ROS system

in the following, we describe the 5 most frequent themes,
together with concrete examples and quotations helpful for
understanding the context in which energy-related issues may
arise in ROS-based systems.

Battery physical properties (29) – Robots can be equipped
with batteries with widely different operating principles, volt-
age, and form factors, ranging from standard laptop batteries
to sodium-ion batteries, micro-scale lithium-ion batteries, etc.
As emerged in our analysis, not taking into account those
properties can lead to energy-related issues such as unexpected
drops in the voltage provided by the batteries, which can lead
to a sudden halt of the system, or fast energy draining. For
example, in DP221 we can get a clear understanding about
the types of battery-related issues a roboticist might have to
deal with: “Kinect can actually handle a small voltage swing
pretty well. I had no problems with 11 to 13.5V although I
would advise against it. Using a typical 7812 or LM1084-12
is the best option. Also, an ATX output provides a stable 12V
(sometimes they do need a minimal load). The Kinect PSU
is rated for 1 or 1.5A, but using the Kinect with camera +
pointcloud only, I never got it above 500mA. However, the
current peaks can bring the robot down”.

Moreover, the physical properties of batteries degrade over
time, even when they are not used. For example, in DP410 a
roboticist mentions that “if you charge the [Kobuki] batteries
and then unplug them, they should survive 6 months to a year.
Open the bottom of the Kobuki and unplug the battery pack.
And remove the battery from the laptop, like it was shipped.”.
These specific types of energy-related causes are especially
cumbersome since they might lead to transient bugs, which
are difficult to reproduce while testing the system.

Bugs and technical issues in the source code (24) – The
majority of data points in this family are about bugs in the
source code, which leads to energy-related issues. For exam-
ple, in DP376, a roboticist refers to a bug in the Onboard SDK
which has been fixed in the 3.9 version with the following
release note: “Battery Information ROS Topic: Fix bug and
implement the battery information of ROS topic” [3].

Energy bugs can escalate into failures impacting the whole
robotic mission. In DP218 the port used by the controller of a
robot was not correctly specified in the ROS parameter server,
leading to the situation where “the battery [of a Pioneer
3-DX robot] is 0% even though the robot is fully charged.
[The developer is] not able to enable or disable the motors.”.
Similar failures can be caused by other types of bugs, such
as erroneous management of physical units; e.g., in DP347,
battery charge was provided in mAh by the driver, but its
corresponding ROS node was publishing it as Ah. The problem
of physical units inconsistencies is recognized in the literature
and there are approaches for their automatic detection, e.g.,
via static analysis and probabilistic inference [26].

Other causes of code-related energy issues include technical
debt (DP320), and the difficulty of developing embedded
software for novice developers, which might involve cross-
compilation and manual deployment of binary code (DP6).



ROS nodes configuration (17) – From an architectural per-
spective, ROS-based systems are composed of independently-
deployed nodes mostly communicating asynchronously via
publish/subscribe messages. If on one side the ROS architec-
tural style supports developers in terms of maintenance and
portability [31], on the other side in our dataset we observe
that configuration errors of ROS nodes can lead to energy-
related issues. In several data points, the root cause of those
configuration errors is located in the launch file of the system,
where roboticists either did not correctly remap topics or
specified erroneous arguments when declaring ROS nodes.
These types of problems can lead to severe consequences. For
example, in DP346, the ROS topic for the battery voltage
is not visible at all within the system, potentially leading to
ROS nodes subscribing to topics that will never produce any
data. Moreover, such problems might lead to missing system-
wide diagnostics information, thus potentially leading to safety
or reliability issues. For example, in DP388 “The diagnostics
interface was written for/around the voltage reporting abilities
of the V2 [of a Segway-based robot]. The V4 segbots have
much more rich battery information (State of Charge for both
the propulsion and auxiliary battery) which is not tracked
by Hardware Diagnostics. Additionally, sensors such as the
Velodyne VLP-16, sensors specific to the V4, are not tracked
by Diagnostics.” In other cases, the configuration of the system
is done without taking into consideration the execution envi-
ronment of the system. For example, in DP316, the ROS node
in charge of providing information about the battery charge of
the laptop continuously publishes warning messages to other
nodes, even if the battery is not present (i.e., the laptop is
powered directly via its power adapter); this misconfiguration
results in a high number of irrelevant messages published
during the whole duration of the robotic mission, thus leading
to a severe communication overhead.

Robot navigation (11) – As shown in Section IV-A, mobile
robots like rovers and drones are particularly discussed in
the ROS ecosystem. As confirmed by the literature [50],
one of the main energy consumers in mobile robots is robot
navigation (e.g., robot acceleration, deceleration, turns). This
phenomenon can be traced back to the fact that mobile robots
heavily interact with hardware components that are particularly
heavy on the battery, such as servos, motors, etc.. For example,
in DP384 the well-known ros-planning/navigation2 ROS
package is extended with a new feature for configuring the
maximum speed of the robot at runtime is proposed as a way
to reduce the energy consumption of the robot.

Execution environment (e.g., board, OS, SDK) (11) – The
execution environment of the ROS nodes is also influencing
the energy consumption of the controlled robot. This phe-
nomenon can happen at different levels of abstraction, ranging
from the board where the ROS nodes are running (e.g., DP6),
to the OS (e.g., DP198) or the used Software Development
Kit – SDK (e.g., DP376). As an example, the discussion
in DP48 includes a suggestion about recommended Single-
board Computers (SBC) for ROS development saying that

roboticists “need an SBC with at least a 1.0Ghz modern CPU
+ 2GB of RAM. If power consumption is not a concern, [the
roboticist] would recommend Intel Core CPUs over Atoms.”.
This example highlights the fact that the choice of used
processor impacts the energy consumption of the robot.

Other notable themes (40) – Other notable causes of energy-
related issues include: streaming images/videos (10 occur-
rences), interaction with sensors and actuators (9 occurrences),
providing feedback to a GUI (8 occurrences), raw computation
(7 occurrences), and networking (3 occurrences). Overall, the
emerged themes are expected and most of them have been
already identified as sources of energy-related issues in the
literature, both for robotics software [50] and other domains
like mobile apps [41], [42], [24]. This result of our study
confirms that roboticists are facing in practice similar causes
as in other application domains.

C. Main solutions for energy-related issues (RQ3)

From the 494 distinct codes emerged in this study, we
classify 303 as a solution. Those codes cover 380 (72.11%)
data points out of the 527 we select as energy-related, which
results in 14 distinct solution themes. Due to space limitations,
in this study, we describe the 6 most recurring solutions (they
describe together 85.54% of the solution data points).

Energy monitoring and tracking (166) – Most of the
solutions that we found are discussions or implementations
of monitoring and tracking of energy parameters. This phe-
nomenon can be related to the fact that robots, likewise
other battery-based devices, need to be aware of their battery
conditions, such as their charge and remaining operational
time. Autonomous robots also self-adapt based on battery
information, where their behavior is updated in order to save
energy when the battery level is low, or even favor processing
when the battery level is not a constraint [30]. Therefore,
monitoring and tracking energy parameters is a key element
when dealing with energy efficiency.

Data point DP111 gives a concrete example of the impor-
tance of energy monitoring in a robotics system: “the robot
monitors its battery level on a topic called /battery_level using
a SMACH MonitorState which is part of the state machine
SM_MONITOR_BATTERY. [...] If the battery level falls below
a threshold (SM_MONITOR_BATTERY returns ”invalid”),
SM_MONITOR_BATTERY transitions to another state called
RECHARGE that moves the robot to the docking station
(NAV_DOCKING_STATION) and recharges the robot.” We see
that the robot relies on the energy information delivered in a
ROS topic by a dedicated battery monitor. In this case, without
the battery information, the robot cannot go back to its docking
station to self-recharge, thus potentially affecting the success
of the robotic mission.

Voltage and current are the most commonly monitored
metrics. In addition, the internal battery temperature is also
considered in 4 data points. Battery temperature is supported
by the ROS Smart Battery System (SBS); data point DP2
shares the ROS SBS specifications as an attachment that



considers the internal battery temperature as an important
parameter for a safety check. For instance, in DP2 a tem-
perature alarm is “set when the Smart Battery detects that its
internal temperature is greater than a preset allowable limit.
When this bit is set, charging should be stopped as soon as
possible.” This can avoid battery damage and keep its physical
characteristics fit, which may increase battery lifetime, and as
consequence, make robots more energy-efficient.

Adaptations in robot behavior (101) – Several solutions rely
on the robot adapting itself in order to respond to (excessive)
energy consumption. We find three (non mutually-exclusive)
adaptations that are common among our data points:
• Abort mission: the robot stops what it is doing due to energy
restrictions. As an example, data point DP84 is about a flying
drone where the energy level of the drone is the main factor for
deciding whether the drone should fly or not. In this specific
case, if the battery level is below a given threshold, the drone
should try to land (both while taking off or when traveling
towards a certain location).
• Shutdown: the robot shuts down itself and the other parts
that hold it. In data point DP103, a roboticist asks others how
to shut down the whole system when the battery level reaches
a certain threshold. Data point DP176 illustrates another case,
where another roboticist goes further and asks how to make
this decision based on ROS messages. For DP103, others
suggest creating a service with superuser rights that can be
invoked to turn the whole system off.
• Limit robot capabilities: once the energy level is low, the
robot decreases the resources allocated to some capabilities or
even disables those that are not vital for the completion of
the mission. For example, DP50 suggests to trade-off image
resolution and frame rate to reduce energy consumption; in
normal operations, the robot publishes high-quality images,
but it decreases their quality when the battery is below a
certain threshold. Data point DP159 illustrates a situation
where the Kinect device is completely disabled in order to
save energy. This can be used either when a sensor has not
been used for a while or when the robot can switch to another
less energy-consuming sensor, in case precision can be traded
off. Both solutions present themselves as pertinent strategies
when the robot depends on or supports human intervention. In
those cases, the robot sends a notification to the roboticist for
informing them that (i) it is running out of battery and (ii) it is
working with limited features. This gives the roboticist some
time to react; and then, replace batteries, or recharge them.
• Other adaptations: Our study also reveals other less frequent
adaptations related to energy efficiency:

• Go back home (e.g., DP423): the robot returns to is dock
station or the starting point of the mission;

• Charge during the mission (e.g., DP18): the robot keeps
performing the mission, while its batteries are recharged;

• Hibernation (e.g., DP5): the robot enters a hibernation
state until its batteries are recharged.

User interfaces for assisting operators (56) – ROS systems
usually provide a user interface (UI) for making the mission

operator aware of the energy status of the robot. Despite
those are summary solutions, they are a key element for
energy-efficient robots since they provide periodic updates
about the energy conditions of the robot to roboticists and
warn/alert them in case of critical energy issues. In our
study, we identify diverse types of UI: Organic Light-emitting
Diode (OLED) and Liquid-crystal Display (LCD) displays
(DP61 and DP509), sound messages by using beeps and
speakers (DP503 and DP515), and dashboard widgets. . [in-
line]DataPoint for widgets. We also came across data points
that discuss or implement specific components dedicated to
operator notifications. For instance, data point DP417 men-
tions a vocal package providing functionalities for alerting the
operator via human-oriented audio alerts.

Reconfiguration of ROS components (23) – ROS systems
are distributed and rely on independent components that
communicate by exchanging several messages at run-time.
Misconfigurations are common in ROS-based systems [48] and
usually require fine adjustments and high expertise in the ROS
communication middleware. In most cases, the reconfiguration
consists of modifying ROS launch files. Another common
solution is to release new ROS components after the robotic
system is deployed, such as for data point DP258 that adds a
battery guard, when the system is updated. Moreover, there are
cases where roboticists do not know how to launch a specific
component, such as an energy monitoring package. This is the
case of data point DP183, where a roboticist asks for help to
publish some battery information as ROS messages: “I am
trying to do is to create a package that executes some of these
functions, for example, to read the voltage of the battery, and
publish the data as ROS messages.”

Use of low-powered devices (22) – In many cases, some
components of a ROS-based system are deployed on an
external Single-board Computer (SBC), as we can see in
data points DP46, DP48 and DP244. In the data point
DP244, a roboticist asks for help to launch ROS on a low-
powered SBC. He says to have chosen ASUS Xtion SBC
due to “the lag of enough USB ports and the fact of less
energy consumption.” We also observe data points where the
discussion heads to other low-powered devices. This is the case
of data point DP47, where a roboticist discusses which laser
scanner they should use for their robotic project. One of the
answers suggests a laser scanner with low power consumption:
“many smaller robots use the Hokuyo URG-04LX, which is
[...] cheaper, has lower power consumption but also much
worse specs than the other two.” The hardware needs to
be purchased, and the price may vary a lot depending on
their characteristics. For instance, a LIDAR sensor for small
projects costs less than e 400. Therefore, knowing energy-
efficient hardware in advance may also benefit economically.

Software improvements (35) – This family of solutions rep-
resents improvements/fixes done exclusively on the software
controlling the robot. For example, data point DP84 is a code
commit with a few line modifications correcting the robot



behavior since a drone was not considering its battery level
while taking off. Another example is the data point DP219,
which corrects the battery status since it had not been updated
in a graphical dashboard. Note that both codes, before being
corrected, may lead to serious energy issues due to wrong
energy tracking. As an example of new software, we consider
data point DP35, which implements a new tf_remapper ROS
node that according to developers helps to “stop wasting
energy and CPU cycles”. This node is used to deal with
messages in a bag, a file format to store logged data in ROS.
In this data point, the mention of energy waste is among many
other technical details, which could have been overlooked
without the extensive data analysis we conduct in this work.
Moreover, if roboticists do not adopt this module as a pattern,
they keep relying on less energy-efficient ones, which as a
consequence, might potentially lead to energy waste.

Other notable themes (71) – Other notable solutions that
our study reveals are: battery charge or recharge strategies (14
occurrences); the use of energy-efficient sensors (11 occur-
rences); simulation of real-world scenarios (11 occurrences);
the software testing that either identifies energy-related bugs
or validates corrections (9 occurrences); recommendation of
alternative batteries (8 occurrences); documents that guide
roboticists or developers (7 occurrences); deploy services
remotely, such as in the Cloud (6 occurrences); and commu-
nication improvements, such as via serial ports or networked
nodes (5 occurrences). Despite these solutions not being
numerous, they are diverse and deserve roboticists’ attention.
They comprise existing documentation that can provide infor-
mation about how to implement new ROS nodes with energy
efficiency in mind, together with dedicated software testing
and simulation techniques. Moreover, remotely deploying ser-
vices that assist or control robots is a good strategy since it
keeps heavy computation away from the robot and, therefore,
improves energy consumption [41].

D. Mentioned quality attributes (RQ4)

In this RQ we investigated whether quality attributes are
mentioned in the studied data points. From the 527 extracted
data points, we noted that 134 of them (25.4%) mention at
least one quality attribute. The most common quality attributes
are Usability, Performance, Reliability, Functional Stability,
and Compatibility, although Usability is by far the most
common one. Due to space constraints, in this section, we
will briefly discuss the three most recurring quality attributes.

Usability (78) – Usability is a measure of how easy to use a
user interface could be. Mentions to usability in our data points
are mostly related to how to better show battery information
to the robot operator. This could be achieved by, for instance,
when one committer adds a script that highlights when the
battery is at full capacity (DP20). Another way to enhance
software usability is by providing accessibility. We noted many
code changes aimed to use sound to indicate battery status. For
instance, the following commit message suggested that “Speak
the remaining percentages of the battery if it’s not charged”;

this particular pull-request (DP526) was made at the project
jsk_robot with this goal.

Performance (18) – Performance is about the process and
techniques applied to software systems aimed to improve
characteristics such as latency, throughput, or memory usage.
In ROS Discourse, one roboticist reported that tf_remap mod-
ule is not efficient. As they reported: “Have you ever run a
tf_remap on a complex system with tens of nodes subscribing
TF? Have you looked at the CPU utilization? Stop wasting
energy and CPU cycles by moving to tf_remapper_cpp”
(DP35). Moreover, we found an issue on a ROS project that
aims to convert files to videos to ease visualization. However,
to improve the speed of the application (which was very
slow in generating animations), ROS committers had to rely
on multiprocessing and downsampling. These changes enable
considerable speedup (DP73). Similarly, we found a commit
that has the intention to disable a module instead of setting it
to zero. According to the commit author, the intention was to
“avoid excessive power usage after shutdown.” (DP447).

Reliability (17) – Reliability is about performing a task consis-
tently, to function without failure. To prevent that robot battery
drains, which would cause the robot task to fail, we observed
several discussions on how to make the robot to recharge its
batteries autonomously (i.e., docking (e.g., DP206). Docking
means that the robot stops whatever it is doing and drives
back to a charging station. Answers to this question were
highly sophisticated since robots can do a myriad of tasks. For
instance, we noticed a pull-request (DP252) that implements
a similar procedure. According to the author: “When taking
off, if the battery is low, should try to land; When reaching
the goal, if the battery is low, should try to land”.

V. DISCUSSION

In addition to the answers to RQ1-RQ4, in our analysis we
also noticed recurrent reflection points about the state of the
practice on energy-efficient robotics software.
Energy-related discussions are rare – Only 0.002% of the
339,563 considered artifacts contained energy-related discus-
sions. This result confirms previous works that also found that
these types of discussions are scarce among developers [37].
Managing energy-related issues is not trivial – In a
non-negligible number of data points (10 for the causes
and 2 for the solutions), roboticists are seeking help about
how to manage energy-related aspects of their software. As
notable examples, in our dataset roboticists were seeking help
for simulating battery usage in the Gazebo ROS simulator
(DP42), how to solve issues in the Kinect sensor due to it
requiring extra power under some conditions DP115, etc. This
reinforces the importance of our study, especially our results
for RQ3, which can support even experienced roboticists in
solving energy-related issues in their ROS-based systems.
Energy consumption should be treated as a first-class
quality attribute – In some data points, we noticed that
energy consumption is considered after an initial version of
the system has been developed. This can be a problem in some



cases since updating a ROS-based system after months of de-
velopment might not be possible (e.g., underwater robots); this
phenomenon can be seen a form of energy-related technical
debt [52]. As an example, in DP44 a roboticist claims that
“we would love to have low power consumption so that the
robot can operate as long as possible [...] I would err towards
the more expensive computer for an initial prototype so that
you can get something running, and then work on optimizing
the software to decrease the computing power required”.
Energy efficiency as a bug – In our analysis, we noticed
that in 9 cases energy-efficiency mechanisms were actually
the source of bugs and/or unexpected behavior within the
system. Those bugs might be difficult to detect since they
are linked to energy consumption in non-trivial ways. For
example, in DP235 “when the turtle3 burger battery gets low
[...] the robot stops moving but the local window [of the SLAM
algorithm] keeps moving in the same direction at the same
speed until the robot position on the local windows gets to the
edge of the global map or over a known obstacle on the global
map window”. Also, as mentioned in DP128, some processes
might go into sleep mode as an effect of a power save feature,
potentially leading to unexpected availability/reliability issues.
We suggest roboticists (and researchers alike) carefully reflect
on the possible consequences of having energy-saving modes
in terms of system availability and reliability.
ROS vs traditional energy efficiency – We noted that de-
veloping energy-efficient robots is not the same as developing
a traditional energy-efficient app. This is partly due to the
natural context of ROS-based software. For instance, robots
are intrinsically battery-driven. When performing tasks such as
driving or flying, ROS-based software should always monitor
energy usage; if the battery is below a certain threshold, the
robot should warn the user and/or possibly move back to the
dock. This behavior brings additional energy challenges, since
constantly monitoring the battery also incurs energy usage.
Similarly, auto-docking is not always possible (given how far
the robot is from the base). Therefore, managing a robot’s
energy consumption seems to be at least as challenging (but
perhaps even more) when compared to traditional apps.
Energy bugs in robotics software – Although in this work
we do not perform a comprehensive analysis on energy bugs,
we did discover some of them when investigating causes of
energy-related issues. More interestingly, however, is the fact
that these bugs are also domain-specific. We did not find
traditional energy bugs such as the loop bug and the no
sleep bug, which are among the most common ones in mobile
apps [39], [38]. For future work, we leave a fine-grained
analysis of energy bugs in robotics software.
UX skills might be on high demand for robotics software
– We noticed in our data points that roboticists have to deal
with a myriad of different types of UI. Many of our data points
are related to improving the way that battery information is
presented. Moreover, there also seems to be a lack of usability
in ROS-based interfaces, evidenced by the high number of
data points targeting this quality attribute. With that in mind,
we believe that developers with UX experience would greatly

benefit the ROS community.
Robotics software tends to have unique energy-related
issues – Other studies in the literature investigated energy-
related issues faced by software developers [42], [36]. Interest-
ingly, there is very limited overlap between those and the ones
faced by roboticists. For instance, in mobile apps development,
recurrent causes of energy-related issues are (i) the misuse
of wake locks for keeping the CPU of the device active for
long-running tasks [29] and (ii) the actual contents displayed
on AMOLED displays [12], and (iii) networking overhead
due to advertisement [42]. Those issues are not mentioned
by roboticists when dealing with energy-related issues.

VI. THREATS TO VALIDITY

External validity – Despite the key role played by ROS in
robotics software [46], [50], its coverage of a large variety
of robots [23], and its vibrant open-source community, we
are aware that ROS-based projects may not cover all types of
robots. Our population data, however, is diverse (∼340k data
points, including 10 different robot families and 12 distinct
robot capabilities). We extracted these data from multiple
projects, covering a large number of contributors, commits,
and types of robots. Moreover, we selected the Git reposito-
ries for this study from the literature [31] and they already
underwent a strict search and selection process, making us
reasonably confident of their representativeness.

Our dataset has been built between February and April
2020. Some unsolved energy-related solutions may have been
solved after that date, or new energy-related issues might have
been reported. Since data from the analyzed repositories are
changing constantly, it would be impractical to work on the
most recent update all the time. We mitigated this threat by
including in our replication package a database with all data
points we collected and investigated in this study.

This study reveals that only a small extent of our dataset
is energy-related. Nonetheless, we identify 10 energy-related
causes and 14 energy-related solutions, which may impact
decisions in robotics software engineering. For instance, if
software engineers are not aware of the impact of a monitoring
rate, they will keep designing energy-inefficient robotics soft-
ware. Therefore, the scale of the study does not prevent us to
identify critical energy-related practices for robotics software.

In this study, we do not consider mailing lists about ROS-
based development. We deem this potential threat to validity
as acceptable since the main communication channels for
developers in the ROS ecosystem are ROS Answers and ROS
Discourse [4]. Finally, our study comprises a relatively long
period of time (∼11 years, i.e., since ROS first releases); to the
best of our knowledge, this makes our study the one with the
longest considered time span in the ROS domain. Given that
in this study we consider multiple data sources, there might
be multiple data points about the same energy-related issue.
For RQ1, we assume a balance on this software developer
behaviour among years. RQ2 and RQ3 are qualitative, so
repetitions can help in mitigating inconsistencies in the manual
data analysis.



Internal validity – We used a fixed set of keywords to
search for energy-related data points while building the dataset
(Section III-B). Even if this search strategy requires relatively
low effort, it proved to be highly effective in previous studies
on energy-efficient software (e.g., [13], [16], [32], [42]).
However, we know that it might lead to a high number of false
positives and false negatives [9]. We mitigated this potential
threat by (i) establishing the search keywords (and related
taboo combinations) from the literature on energy-efficient
software — see Table I (Phase 1), (ii) manually checking all
5,111 data points resulting from the search and removing all
false positives (Phase 2), and (iii) testing that the considered
keywords are complete by manually checking a random sam-
ple of 400 data points without energy-related terms (Phase 3).
Also, three researchers were involved in the phases mentioned
above of our dataset construction process, following a known
methodological procedure to avoid subjectivity [53].

Moreover, we answered RQ2 and RQ3 via thematic anal-
ysis. To mitigate possible biases due to subjectivity in the
extraction of the codes and themes, we carefully followed the
thematic analysis approach [51]. Three researchers participated
in the thematic analysis approach and all emerged themes
were jointly revised until consensus was reached. Finally, even
though in some discussions the roboticists extensively elabo-
rate on the impact at run-time in their projects, in this study
we do not assess whether the emerged causes and solutions of
energy-related issues actually impact the energy consumption
of the robots. We deem this further investigation as out of
scope for this specific study since (i) energy consumption
is known to be heavily application-dependent [41] and (ii)
a definitive answer would require a dedicated experiment
targeting each type of robot discussed in our dataset.

VII. RELATED WORK

ROS-based software engineering research – The growing
use of ROS in practice is also reflected by recent scientific
publications targeting the ROS software ecosystem. Fischer-
Nielsen et al. [22] studied dependency bugs (i.e., bugs that
appear when accessing a not available asset) on ROS reposito-
ries. Malavolta et al. [31] studied 335 ROS repositories from
an architectural standpoint and proposed a set of guidelines
for the related software architecture design. Curan et al. [19]
created a set of tools aimed at visualizing development metrics
on ROS repositories to assess their maintenance health. None
of these works, though, try to understand what are the energy-
related problems that ROS developers have and how they cope
with them, which is the goal of our research.
Energy efficiency in the ROS ecosystem – Our work is not
the first investigating energy efficiency in the ROS ecosystem.
Swanborn and Malavolta [50] reviewed the existing body of
research on energy efficiency in robotics software. They found
17 primary studies in the area. They observed that the first
research work in this domain was published back in 1995 [8],
although the majority of the selected research works were
published between 2012 and 2020. This shows the emerging
character of the field. While most of the selected works are

related to energy measurements and improvements, none of
them addressed the analysis of developers’ contributions on
open source repositories. Thus, to the best of our knowledge,
our work is the first to investigate how developers writing
robot-oriented programs deal with energy issues.
Mining energy-related data points – There is a significant
number of research that exploits well-known developer repos-
itories to gather energy-related information. Pinto et al. [42]
studied the most popular questions (and related answers)
about software energy consumption on StackOverflow. Moura
et al. [36] performed similar work, but focused on energy-
related code changes, i.e., changes that developers do with the
intention to reduce energy consumption. Inspired by the work
of Pinto et al. [42] and Moura et al. [36], our work shares some
of their research questions, but focuses on the ROS ecosystem.
As such, we also expand these two contributions by exploring
different Q&A platforms and software repositories.

Further, there are domain-specific research that share similar
goals. For instance, some studies focus on mining energy-
aware commits in the Android ecosystem [7]; mining energy-
aware commits and pull-requests in Android and iOS ecosys-
tems and then building a catalog of mobile energy pat-
terns [16]; or investigating if energy-aware commits have any
impact on maintainability metrics [17]. These studies share a
common limitation: since they rely on mining techniques, they
do not measure the actual energy consumption data, and some
of the solutions to energy-related problems might be limited to
the understanding of the specific developers. Our work shares
a similar limitation, too; however, we believe it has a lesser
impact in our case, as the majority of our data points are based
on textual discussions, and depend less on code changes.

VIII. CONCLUSIONS

Given the significant and increasing energy footprint of
robots in various sectors, we analyzed the ROS ecosystem
from various open-source channels; we quantified and char-
acterized the main causes, solutions, and possible trade-offs
of roboticists’ energy-related issues. Energy-related issues
are scarce and the energy consumption is often addressed
after delivery; at the same time, roboticists look for help
to increase the energy efficiency of their robotics software.
The practices resulting from our study offer the first step
to help roboticists reuse solutions that already addressed en-
ergy efficiency, hence building increasingly-mature know-how
about the development of energy-efficient robotics software.
Our results also support researchers by providing the first
comprehensive overview of the state of the practice on energy-
related issues in robotics software. Such an overview can
help researchers in identifying impactful research directions
for future contributions in software engineering and robotics.

ACKNOWLEDGMENTS

This research is partially supported by the Dutch Research
Council (NWO) through the OCENW.XS2.038 grant; the CN-
PQ/FA through the PPP-CP-20/2018 call; and the FAPESPA.



REFERENCES

[1] From Internet to robotics: A roadmap for US robotics: 2020 Edition.
http://www.hichristensen.com/pdf/roadmap-2020.pdf, Oct 2020. [On-
line; accessed 29. Oct. 2020].

[2] Industrial robotics market revenue worldwide 2025 | Statista.
https://www.statista.com/statistics/760207/worldwide-industrial-
robotics-market-revenue, Oct 2020. [Online; accessed 29. Oct.
2020].

[3] Release Notes for Onboard SDK 3.9 - DJI Onboard SDK Documen-
tation. https://developer.dji.com/onboard-sdk/documentation/appendix/
releaseNotes.html, May 2020. [Online; accessed 6. Jan. 2021].

[4] ROS Community Metrics. http://wiki.ros.org/Metrics, Jul 2020. [Online;
accessed 28. Oct. 2020].

[5] I. 25010:2011. Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software
quality models. https://www.iso.org/standard/35733.html, 2011.

[6] Anonymous. MSR 2021 Replication Package. https://github.com/S2-
group/msr-2021-robotics-green-practices-replication-package, 2021.

[7] L. Bao, D. Lo, X. Xia, X. Wang, and C. Tian. How android app devel-
opers manage power consumption?-an empirical study by mining power
management commits. In 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR), pages 37–48. IEEE, 2016.

[8] A. Barili, M. Ceresa, and C. Parisi. Energy-saving motion control
for an autonomous mobile robot. In 1995 Proceedings of the IEEE
International Symposium on Industrial Electronics, volume 2, pages
674–676 vol.2, 1995.

[9] G. Bavota. Mining unstructured data in software repositories: Current
and future trends. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 5,
pages 1–12. IEEE, 2016.

[10] C. Calero, M. F. Bertoa, and M. Á. Moraga. A systematic literature
review for software sustainability measures. In 2013 2nd international
workshop on green and sustainable software (GREENS), pages 46–53.
IEEE, 2013.

[11] Q. Chang, G. Xiao, S. Biller, and L. Li. Energy saving opportunity
analysis of automotive serial production systems (march 2012). IEEE
Transactions on Automation Science and Engineering, 10(2):334–342,
2012.

[12] X. Chen, Y. Chen, Z. Ma, and F. C. Fernandes. How is energy
consumed in smartphone display applications? In Proceedings of the
14th Workshop on Mobile Computing Systems and Applications, pages
1–6, 2013.

[13] S. A. Chowdhury and A. Hindle. Characterizing energy-aware software
projects: Are they different? In Proceedings of the 13th International
Conference on Mining Software Repositories, pages 508–511, 2016.

[14] F. Ciccozzi, D. D. Ruscio, I. Malavolta, P. Pelliccione, and J. Tumova.
Engineering the software of robotic systems. In Proceedings of the 39th
International Conference on Software Engineering Companion, pages
507–508. IEEE Press, May 2017.

[15] J. Cohen. Weighted kappa: Nominal scale agreement provision for scaled
disagreement or partial credit. Psychological bulletin, 70(4):213, 1968.

[16] L. Cruz and R. Abreu. Catalog of energy patterns for mobile applica-
tions. Empirical Software Engineering, 24(4):2209–2235, 2019.

[17] L. Cruz, R. Abreu, J. Grundy, L. Li, and X. Xia. Do energy-oriented
changes hinder maintainability? In 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 29–40. IEEE,
2019.

[18] D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis
in software engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement, pages 275–284, Sep. 2011.

[19] W. Curran, T. Thornton, B. Arvey, and W. D. Smart. Evaluating
impact in the ros ecosystem. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 6213–6219, May 2015.

[20] P. Estefo, J. Simmonds, R. Robbes, and J. Fabry. The robot operating
system: Package reuse and community dynamics. Journal of Systems
and Software, 151:226–242, 2019.

[21] J. Fereday and E. Muir-Cochrane. Demonstrating rigor using thematic
analysis: A hybrid approach of inductive and deductive coding and
theme development. International journal of qualitative methods,
5(1):80–92, 2006.

[22] A. Fischer-Nielsen, Z. Fu, T. Su, and A. Wąsowski. The forgotten
case of the dependency bugs : On the example of the robot operating
system. In 2020 IEEE/ACM 42nd International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP), pages 21–
30, 2020.

[23] B. Gerkey. Why ROS 2? https://design.ros2.org/articles/why_ros2.html,
2019.

[24] S. Hao, D. Li, W. G. Halfond, and R. Govindan. Estimating mobile
application energy consumption using program analysis. In 2013 35th
international conference on software engineering (ICSE), pages 92–101.
IEEE, 2013.

[25] S. H. Juan and F. H. Cotarelo. Multi-master ros systems. Technical
report, 2015.

[26] S. Kate, J.-P. Ore, X. Zhang, S. Elbaum, and Z. Xu. Phys: probabilistic
physical unit assignment and inconsistency detection. In Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 563–573, 2018.

[27] X. Li, Y. Yang, Y. Liu, J. P. Gallagher, and K. Wu. Detecting and
diagnosing energy issues for mobile applications. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 115–127, 2020.

[28] W. Lidwell, K. Holden, and J. Butler. Universal principles of design.
Rockport Pub, 2010.

[29] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni. Understanding and
detecting wake lock misuses for android applications. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 396–409, 2016.

[30] I. Malavolta, K. Chinnappan, S. Swanborn, G. Lewis, and P. Lago.
Mining the ROS ecosystem for Green Architectural Tactics in Robotics
and an Empirical Evaluation . In Proceedings of the 18th International
Conference on Mining Software Repositories, MSR, page To appear, New
York, NY, May 2021. ACM.

[31] I. Malavolta, G. Lewis, B. Schmerl, P. Lago, and D. Garlan. How do
you architect your robots? state of the practice and guidelines for ROS-
based systems. In ACM/IEEE International Conference on Software
Engineering, 2020.

[32] H. Malik, P. Zhao, and M. Godfrey. Going green: An exploratory
analysis of energy-related questions. In IEEE/ACM Working Conference
on Mining Software Repositories, pages 418–421, 2015.

[33] H. Matalonga, B. Cabral, F. Castor, M. Couto, R. Pereira, S. M.
de Sousa, and J. P. Fernandes. Greenhub farmer: real-world data
for android energy mining. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 171–175.
IEEE, 2019.

[34] D. Meike, M. Pellicciari, and G. Berselli. Energy efficient use of
multirobot production lines in the automotive industry: Detailed system
modeling and optimization. IEEE Transactions on Automation Science
and Engineering, 11(3):798–809, 2013.

[35] F. A. Moghaddam, P. Lago, and I. C. Ban. Self-adaptation approaches for
energy efficiency: a systematic literature review. In 2018 IEEE/ACM 6th
International Workshop on Green And Sustainable Software (GREENS),
pages 35–42. IEEE, 2018.

[36] I. Moura, G. Pinto, F. Ebert, and F. Castor. Mining energy-aware
commits. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pages 56–67. IEEE, 2015.

[37] C. Pang, A. Hindle, B. Adams, and A. E. Hassan. What do programmers
know about software energy consumption? IEEE Software, 33(3):83–89,
2015.

[38] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
pages 1–6, 2011.

[39] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent
inside my app? fine grained energy accounting on smartphones with
eprof. In Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, page 29–42, New York, NY, USA,
2012. Association for Computing Machinery.

[40] R. Paulissen, S. Kalisingh, J. Scholtes, A. van Geldrop, and A.-L.
Hoftijzer. Robotics in the Netherlands. Netherlands Foreign Investment
Agency (NFIA) report, 2016.

[41] G. Pinto and F. Castor. Energy efficiency: a new concern for application
software developers. Communications of the ACM, 60(12):68–75, 2017.

[42] G. Pinto, F. Castor, and Y. D. Liu. Mining questions about software
energy consumption. In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 22–31, 2014.

[43] G. Procaccianti, S. Bevini, and P. Lago. Energy efficiency in cloud
software architectures. In EnviroInfo, pages 291–299, 2013.

http://www.hichristensen.com/pdf/roadmap-2020.pdf
https://www.statista.com/statistics/760207/worldwide-industrial-robotics-market-revenue
https://www.statista.com/statistics/760207/worldwide-industrial-robotics-market-revenue
https://developer.dji.com/onboard-sdk/documentation/appendix/releaseNotes.html
https://developer.dji.com/onboard-sdk/documentation/appendix/releaseNotes.html
http://wiki.ros.org/Metrics
https://www.iso.org/standard/35733.html
https://github.com/S2-group/msr-2021-robotics-green-practices-replication-package
https://github.com/S2-group/msr-2021-robotics-green-practices-replication-package
https://design.ros2.org/articles/why_ros2.html


[44] G. Procaccianti, P. Lago, and S. Bevini. A systematic literature
review on energy efficiency in cloud software architectures. Sustainable
Computing: Informatics and Systems, 7:2–10, 2015.

[45] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[46] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[47] M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with
ROS: a practical introduction to the Robot Operating System. O’Reilly
Media, Inc., 2015.

[48] A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. Dos Santos.
Mining the usage patterns of ros primitives. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),

pages 3855–3860. IEEE, 2017.
[49] F. Shull, J. Singer, and D. I. Sjøberg. Guide to advanced empirical

software engineering. Springer, 2007.
[50] S. Swanborn and I. Malavolta. Energy efficiency in robotics software:

A systematic literature review. In 35th IEEE/ACM International Confer-
ence on Automated Software Engineering Workshops (ASEW ’20), pages
137–144. ACM, 2020.

[51] M. Vaismoradi, H. Turunen, and T. Bondas. Content analysis and
thematic analysis: Implications for conducting a qualitative descriptive
study. Nursing & health sciences, 15(3):398–405, 2013.

[52] R. Verdecchia, P. Kruchten, P. Lago, and I. Malavolta. Building and
evaluating a theory of architectural technical debt insoftware-intensive
systems. Journal of Systems and Software, page 110925, 2021.

[53] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering. Computer Science.
Springer, 2012.


	I Introduction
	II Background
	III Study Design
	III-A Goal and Research Questions
	III-B Dataset Building
	III-C Data Analysis

	IV Results
	IV-A Consideration of energy-related issues (RQ1)
	IV-B Main causes of energy-related issues (RQ2)
	IV-C Main solutions for energy-related issues (RQ3)
	IV-D Mentioned quality attributes (RQ4)

	V Discussion
	VI Threats to Validity
	VII Related Work
	VIII Conclusions
	References

