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Abstract—Context. Many Internet content platforms, such as
Spotify and YouTube, provide their services via both native and
Web apps. Even though those apps provide similar features to
the end user, using their native version or Web counterpart might
lead to different levels of energy consumption and performance.
Goal. The goal of this study is to empirically assess the energy
consumption and performance of native and Web apps in the
context of Internet content platforms on Android.
Method. We select 10 Internet content platforms across 5 cate-
gories. Then, we measure them based on the energy consumption,
network traffic volume, CPU load, memory load, and frame time
of their native and Web versions; then, we statistically analyze
the collected measures and report our results.
Results. We confirm that native apps consume significantly less
energy than their Web counterparts, with large effect size. Web
apps use more CPU and memory, with statistically significant
difference and large effect size. Therefore, we conclude that
native apps tend to require fewer hardware resources than their
corresponding Web versions. The network traffic volume exhibits
statistically significant difference in favour of native apps, with
small effect size. Our results do not allow us to draw any
conclusion in terms of frame time.
Conclusions. Based on our results, we advise users to access
Internet contents using native apps over Web apps, when possible.
Also, the results of this study motivate further research on the
optimization of the usage of runtime resources of mobile Web
apps and Android browsers.

I. INTRODUCTION

The market share of mobile devices has grown explosively
in recent years. Surpassing desktop computers in 2016 and ac-
counting for around 60% of devices as of 2022 [1]. This makes
it the primary target for Internet content platforms, which
includes any provider that offers information or services over
the Internet. Many Internet content platforms, such as Spotify
and YouTube, provide their services via both native and Web
apps. Native apps are self-contained software packages that
are installed on the target device and usually bundled with
all static resources, while Web apps are composed of HTML
documents, CSS style sheets, and JavaScript for client-side
computation. Web apps are accessed through a Web browser
and their resources are downloaded every time the Web app is
opened unless cached. Dynamic content is loaded at runtime,
typically over HTTP(S) from a remote endpoint. Content
platforms have the incentive to provide their services via both
native and Web apps, as seen in Fig. 1, with full or nearly full
feature parity in order to capture as many users as possible.

Even though those apps provide similar features to the end
user, using their native version or Web counterpart might lead
to different levels of energy consumption and performance.

Fig. 1: Reddit native Android (left) vs Web app (right)

Users can be motivated to use either one due to various
factors, such as their environmental awareness, improved bat-
tery life, and perceived responsiveness contributing to better
usability. One should not however assume that this will be
a universal decision since noteworthy popular platforms vary
greatly in the type and method of presenting their content. For
example, YouTube and TikTok offer almost exclusively video,
while other social media platforms such as Facebook, Twitter,
and Reddit consist of text, images, and video combined.
A very significant part of using such platforms consists of
consuming the content that they provide, which is possible
either through a native app or the corresponding mobile Web
app. The observation that video content requires more energy
and processing than just audio playback is trivial. Users can
infer this from the difference in battery life for the different
activities. Some manufacturers, like Apple, also report this in
the expected battery life for different activities in the device
specifications [2]. Gauging the extent of the difference in
performance and energy consumption between native apps and
their Web app counterparts is a non-trivial research avenue.
The answer to this could be useful in deciding which version
of any given platform a user should consider.

The goal of this study is to compare the energy con-
sumption and performance of native Android apps and their
Web counterparts. To this aim, we select 10 Internet content



platforms across 5 categories. Then, we measure them based
on the energy consumption, network traffic volume, CPU load,
memory load, and frame time of their native and Web versions;
then, we statistically analyze the collected measures and report
our results.

Based on our results, we advise users to access Internet
content using native apps over Web apps, when possible to
optimize the battery life of their devices. The maintenance of
two different versions of the same app (perhaps even more
in the case of multiple native apps for different platforms)
requires additional resources from the provider. Therefore, the
results might be of interest to the developers to decide which
type of app is best suited for their particular platform. Focusing
only on one version may allow them to lower development
costs. Additionally, the findings of this study will motivate
further research on the optimization of the usage of runtime
resources of mobile Web apps and Android browsers.

II. EXPERIMENT DEFINITION

The goal of this study is to analyze app types for the purpose
of evaluation with respect to their energy consumption and
performance from the point of view of a user in the context of
Internet content platforms on Android.

From the goal, we derive the following two research ques-
tions which focus on energy and performance respectively:

RQ1 How does energy consumption vary between
native and Web versions of the same app?

Between native and Web, technical differences such as the
media codecs, content (pre-)fetching and caching strategy or
user interface behavior can impact the energy consumption
and performance of mobile apps. We suspect that in practice,
there may be a statistically significant difference in energy
consumption and performance. In order to answer the question
quantitatively, the energy consumption of the apps is measured
in Joules (J) over a certain period of time while interacting
with the content in a typical fashion. The typical user interac-
tion may vary between apps, depending on how much input
is required to consume the content. To simulate continuous
consumption of content, we provide a custom input sequence
per content platform, for example, continuous scrolling to load
new items in a news feed or no input when watching a video.
Since the quality of the content may differ between native
and Web versions (compression, available resolution, protocol
overhead), we also measure the network traffic volume.

RQ2 How does performance vary between native
and Web versions of the same app?

Native Android apps are predominantly written in Java, while
Web apps run within the HTML and JavaScript engine of
the browser app. This could result in computational overhead,
however the performance of user interface components and
their use by Web developers could even be more optimized
compared to native apps. For this research question, we con-
sider the utilization of the hardware resources (CPU, memory)
and the achieved refresh rate of the user interface as well
as the network traffic volume. CPU utilization is measured

as percentages of the respective maximum device capability
and memory utilization in kilobytes (kB). The refresh rate
is the time between two consecutive frames being rendered
(ns) and the network traffic volume is the total amount of
bytes (B) sent and received by the device. A lower frame
rate could be an indication of insufficient hardware resource
utilization or availability, while a higher network traffic volume
at similar hardware utilization may indicate more efficient data
processing. Both CPU and memory utilization are measured
because some, but not all, content is strictly linear (video).

III. EXPERIMENT PLANNING

A. Subjects Selection

For the selection of subjects in this research, we start by
obtaining a list of the top 2000 most visited fully qualified
domain names from the Tranco list [3], as well as a list of
the top 2000 most downloaded native apps from the Google
Play Store from a Kaggle dataset [4]. Next, we create a
pairwise matching between the two lists using the domain
name without the top-level domain and the app name based on
exact lowercase string comparison per word and filter out all
elements for which no match could be made. This is necessary
because sometimes the app name contains additional words.
Matching on the package name identifier did not yield correct
results, because some companies changed their app name and
domain used on the Web as part of a rebranding, but the
package name cannot be changed. From this, we obtain a
list of 170 domains without duplicates. The category of each
platform is derived from the app category in the Google Play
store and described in Table I. Other categories like utilities
or games are excluded because they are not suitable for this
study; due to the functional diversity of the apps within the
respective category, the lack of dynamically loaded content
from a remote source, or the lack of a Web app version. For

TABLE I: Selected content platform categories

Category Description
News Online newspapers, magazines as well as specialized

offerings such as in weather, finance, and sport
Social media User driven platforms including messaging, (micro-

)blogging and image boards
E-Commerce Online retail, review, and trading platforms
Audio streaming Playback of recordings or live streams
Video streaming Playback of recordings or live streams

each of our categories in Table I we randomly sample two
items. This is done by generating a random permutation of
the entire list and iterating over it. For each item, we do the
following steps until we have selected 10 subjects:

1) Verify that comparable native and Web apps exist for
Android

2) Determine the category according to Table I
3) Select the current item, if less than two items have been

selected for the category of the current item (see Table I)
While the number of investigated apps is rather small,

having more than one app per category may help to support
the generalizability of any findings. We only consider native
Android apps and Web apps running in the Android version



of the Google Chrome browser to limit the scope of the
study. Many default app settings vary between native and Web
versions, such as automatically playing video previews and
default resolution. To simplify the experiment, we consider the
default app settings assuming that they are not changed by the
majority of users and are consciously set by the developers.
Further, only apps that can be used with a free account without
providing a phone number and without regional restrictions are
considered to simplify the experiment. False positive matches
using similar names are manually removed. Using this method,
we obtain the following study subjects listed in Table II.

TABLE II: Subjects

Native app Web app Category
ESPN espn.com News
The Weather Channel weather.com News
LinkedIn linkedin.com Social media
Pinterest pinterest.com Social media
Coupang coupang.com E-Commerce
Shopee shopee.tw E-Commerce
SoundCloud soundcloud.com Audio streaming
Spotify spotify.com Audio streaming
Twitch twitch.tv Video streaming
YouTube youtube.com Video streaming

B. Experimental Variables

In the following paragraphs, we identify the independent
and dependent variables for our two research questions. The
dependent variables are shown in Table III.

TABLE III: Dependent variables

Variable Description RQ
Energy consumption (e) Energy consumption is measured in

Joules (J) as the energy consumed by
the mobile device during the experi-
ment run

RQ1

Network traffic (n) Amount of data in Bytes (B) sent and
received by the mobile device during
the experiment run

RQ2

CPU load (c) Mean relative (%) device CPU uti-
lization across all cores

RQ2

Memory load (m) Mean (kB) device memory utilization RQ2
Frame time (f ) Median time in nanoseconds (ns) be-

tween two successive frames (We use
median as an aggregation measure,
since we expect extreme outliers due
to apps blocking on the main thread
during certain operations)

RQ2

For our first research question concerning energy consump-
tion, we only have one independent, nominal variable APP
TYPE. The two possible treatments for the factor correspond-
ing to this variable are ‘native’ and ‘Web’. This determines
if the user should interact with the native or Web app for the
respective content platform. Thus, each run of a fixed length
of 3 minutes selects the concrete app and version for simulated
interaction based on the treatment for this factor. The single
dependent, continuous variable for the first research question
is the energy consumption (e) of the device.

For our second research question, we have the same inde-
pendent variable APP TYPE and possible corresponding values
as for the first research question. Here multiple dependent

variables indicate the performance. CPU load (c) and frame
time (f ) are continuous while memory load (m) and network
traffic volume (n) are discrete. These variables are captured
using different plugins for the Android Runner experiment
framework [5], namely the batterystats, Android and fram-
etimes plugins provided by the framework itself. Network
traffic volume is measured in bytes using a custom script that
computes the difference of the overall traffic volume measured
by the operating system using the dumpsys utility [6].

C. Experimental Hypotheses

Let µdt denote the mean of the sample for a given dependent
variable (d) and APP TYPE (t). For our first research question,
the null hypothesis is that the mean energy consumption for
any native app is equal to its Web app counterpart. The
alternative hypothesis is consequently that there is a difference
between native and Web versions of the same app in terms of
energy consumption. Since we do not know if native apps
could consume more or less energy than Web apps, we use a
two-sided statistical test.

H0 : µenative = µeWeb

Ha : µenative 6= µeWeb

(1)

For our second research question, we investigate the perfor-
mance indicated by network traffic volume (n), CPU load (c),
memory load (m), and frame time (f ). The null-hypothesis
is that there is no difference in means for any of these
four dependent variables between native and Web versions
of a subject. The alternative hypothesis states that there is at
least one variable that is significantly different between native
and Web versions. Once again, we do not make any prior
assumption about the sign of the difference between native
and Web, so a two-sided statistical test is required.

H0 : µdnative = µdWeb ∀d ∈ {n, c,m, f}
Ha : µdnative 6= µdWeb ∃d ∈ {n, c,m, f}

(2)

D. Experiment Design

Our experiment only has a single factor, leading to a simple
design. We consider 5 different categories, as described in
Table I. Furthermore, we have 2 different app types: native
and Web apps. Last, for each category, two subjects will be
evaluated, for example, YouTube and Twitch in the category
of video streaming platforms. As a result, the total number
of trials for the experiment is 20. Moreover, the total run
duration is chosen to be 3 minutes (180 seconds). This is a
significant length that allows for capturing meaningful data for
our measurements. In order to take into account the possible
fluctuations of the collected energy measures and to reach
higher statistical power [7], the number of repetitions for each
subject is 25 times, resulting in a total of 500 runs over all
subjects. This should help to average out our results, thereby
reducing the impact of small variations between runs. The
cooldown process ensures that energy consumption, power
state, as well as the temperature of the device to return to
ambient levels after each run. In order to achieve this, we
pause the experiment execution for 30 seconds after each run.



The Android Runner framework furthermore adds a framework
overhead of 60 seconds to each run. Finally, the total duration
for the execution of the experiment comes out to 37.5 hours,
considering all the aforementioned factors.

E. Data Analysis

Since zero or negative values are not possible for the
selected metrics, any run that either contains such values or is
missing any values indicates some failure in the execution.
These runs are thus not included in the analysis to avoid
inaccurate results. For each subject, we ensure that we have the
same number of data points for the native and Web version. We
discard additional runs by random selection. For all tests, we
use a standard likelihood threshold α = 0.05. In the context
of our experiment, the population is the set of all pairs of
corresponding native and Web apps available on Google Play
and the Web. After obtaining the dependent variables for each
run from the measurements, they are quantitatively analyzed.

a) Data description and exploration: Initial insight is
obtained by visualizing the data per dependent variable and
treatment using box-jitter mixed plots.

b) Testing for normality: Using the Shapiro-Wilk test,
we determine if the data for each dependent variable follows
a normal distribution over all values for CATEGORY. Visual
inspection is performed by means of density and quantile-
quantile (QQ) plots.

c) Given normality: We investigate the difference be-
tween native and Web versions for all categories by performing
a paired t-test. Since we do not make any prior assumption
about the sign of the residual, we perform a two-tailed test. We
quantify the effect size using Cohen’s d measure if a significant
difference can be found and H0 from hypotheses set 1 can be
rejected. The obtained effect size is interpreted according to
the suggestion of [8].

d) Not given normality: We use non-parametric tests to
investigate the difference between native and Web versions.
First, we do not consider the category and apply the Wilcoxon
signed-rank test and, if a statistically significant difference is
found. In this case, we reject H0 from hypotheses set 2. To
quantify the effect, we use Cliff’s delta. Our interpretation is
informed by [9].

IV. EXPERIMENT EXECUTION

A replication package of the code used for the experiment
is made available through an anonymous repository [10].

A. Preparation

The first step consists of downloading the list of native
apps that were selected as subject of study in Section III. For
this, we download the corresponding app from the Google
Play Store and extract the APK file using the Android Debug
Bridge (ADB) [11]. For convenience, a simple bash script is
used to install or uninstall all the APK files prior to running
the experiment. This guarantees that the correct app version
(Native app versions are available in the replication package:
see Section IV) is used and saves time during the experiments

since apps are not installed and uninstalled between runs.
Furthermore, by first removing all subjects from the device,
we guarantee that they will use their default configuration
during the experiment. The Web apps are run in the Google
Chrome browser app. This Web browser is chosen because it
has the highest market share on mobile devices [12]. Some
Internet content platforms require the user to authenticate
in order to engage with their content. Since this is a hard
and time-consuming process to automate, and it may further
show dynamic user interface elements, part of the initial setup
consists of the manual user authentication for native and Web
apps. At this point, the experiment is prepared to be setup for
the following steps in the execution.

B. Setup

Next, we describe our experiment setup, which is visualized
in Fig. 2. The experiment is carried out using the experiment
framework Android Runner [5] with a Nokia 6.2 (model
TA-1198) running Android (Go edition) 10. This entry level
smartphone from 2019 is equipped with a 1.8 GHz octa-
core Snapdragon 636 CPU, 3 GB memory, and a 3500 mAh
battery [13]. The android device (hereafter just device) is
connected through USB 3 to a computer with a GNU/Linux 5
system running the experiment framework. This computer is
connected to 230V wall power and charges the device. Since
the energy consumption of the device is estimated using the
hardware activity and power profile of the device, the battery
is not drained during the experiments. This also prevents the
device from switching on any power saving measures that
could impact the experiment or from unexpectedly shutting
down. All measurements are taken on the device itself using
the built-in debugging tools and transmitted to the computer
through the ADB and the systrace utility [14]. Using ADB,
the device state is configured and input is simulated during
the experiment. These features are provided by the Android
Runner framework [5], which orchestrates the experiment fol-
lowing the corresponding configuration file. This configuration

USB

Android device

System utilities 
(dumpsys, logcat)

Subject
(Native apps, web 
apps in Chrome)

Remote resource

GNU/Linux 5 system

Android Runner

ADB

systrace

Our experiment
Network plugin

Bash utilities

Built-in plugins (android, 
batterystats, frametime)

Access remote resources

Internet 
over Wi-Fi

Experiment
(configuration, scripts)

Measurements

Instrumentation

Fig. 2: Experiment setup (yellow indicates Android utilities,
blue the subjects, green the components of the Android Runner
framework, and red our experiment.)



further specifies scripts and plugins to be run before and after
each step in the experiment. It is not feasible to completely
mock the remote resources for all subjects in our experiment.
Thus, they are accessed regularly over the Internet using
Wi-Fi. During the execution of the experiment, we limited
fluctuations of the Wi-Fi network by having only one device
connected to it, always at the same distance from the Wi-
Fi router. Before the experiment, the connection speed is
measured to be 100Mbps using speedtest [15].

Using built-in hooks of the Android Runner framework, we
ensure that the device is in a pre-defined state for each run. At
the beginning of the experiment, a custom script resets the state
of the device, which includes the following steps: (1) Unlock
the device, (2) Enable ’Stay awake’, (3) Stop all running apps,
(4) Enable airplane mode but keep Wi-Fi enabled, (5) Dim the
screen and mute media playback.

Before each new run, the app of the previous run is shut
down using ADB. Since some selected applications require
authentication and take measures against repeated automated
logins, we log in using a test account before the experiment
and do not clear the app data between runs. However, after
each run, we automatically selectively clean the browser
session including tabs and all cached data except cookies
required to persist the authentication. For each run of a native
app, we clear the corresponding app cache.

C. Measurement
Android Runner is used to start each experiment. All

parameters for measuring the dependent variables are spec-
ified in two configuration files, config_native.json and con-
fig_web.json. These measurements are collected by the built-
in android, batterystats, and frametimes plugins as well as our
own custom network plugin.

TABLE IV: Tools and rates for the measurements

Measurement Rate Plugin dumpsys
utility

CPU load 10 Hz Android cpuinfo
Memory load 10 Hz Android meminfo
Energy consumption n/a Batterystats batterystats
Frame time 10 Hz Frametimes gfxinfo
Network traffic volume n/a Network netstats

TABLE V: Automated usage scenarios for selected platforms

Usage scenario (looped)
ESPN Open news article, scroll down, continue

with next article
The Weather Channel Check hourly forecast, check 10-day fore-

casts, check radar
LinkedIn Scroll personal feed, scroll jobs
Pinterest Scroll posts, open post, go back
Coupang Open category, scroll products, open product

page, check comments
Shopee Open category, scroll products, open product

page, check comments
SoundCloud Listen to promoted song
Spotify Search for a playlist, listen to playlist
Twitch Search for channel, watch channel
YouTube Search for video, watch video

Table IV shows how each plugin collects the data using
native android utilities. The native/Web apps are then launched

and follow a set of instructions outlined in each app’s inter-
action.py file. These instructions are a combination of tap,
swipe, and write-text commands in order to replicate the
usage scenarios mentioned in Table V. Since unpredictable
interstitial advertisements can disturb the interaction, we use
dns.adguard.com for DNS, which prevents advertisements
from being shown without impacting the functionality of the
apps. Additionally, there is a 30-second interval between each
run to ensure they are properly stopped with no lingering
effects.

D. Analysis

R studio [16] version 2022.2 along with R [17] version
4.1 are used for the statistical tests and analysis including
the effsize package [18]. The results are visualized using the
package tidyverse [19] and qqplotr [20].

V. RESULTS

Before analyzing the results obtained from the experiment,
all invalid data must be removed. For a considerable portion of
runs, the network traffic volume measures 0 bytes. This may be
caused by the statistics not being updated before being read
by the profiler. Since this metric is completely independent
of all others, we simply discard all of its invalid values in
the analysis, leaving a reduced amount of data point pairs
per subject for this metric. For YouTube, 24 pairs could be
used, for Twitch 23. ESPN and Shopee have 19 valid pairs.
For Spotify, The Weather Channel and SoundCloud it is only
13, 12 and 11 pairs respectively. For the remaining subjects
(Coupang, LinkedIn, Pinterest), no invalid data needed to be
removed. Due to the resulting uneven distribution of subjects
for this metric, the corresponding measurements may be
skewed.
The descriptive statistics for all metrics are shown in Table VI.
For the initial exploratory analysis of the experiment data, we
visualize the measurements for all dependent variables using
box plots with a jitter overlay of the individual data points and
density plots in Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7.

Using these figures and the corresponding legend in Ta-
ble VIII, we can already make some interesting observations
about the data we have collected.

a) Energy consumption: With respect to energy con-
sumption (see Fig. 3), we observe that the native versions
of our subjects have a noticeably lower mean and a clearly
non-normal distribution, with two distinct peaks compared to
the Web versions which have less distinct peaks. While the
Web version of Twitch seems to consistently consume the most
energy, it is situated in the lower peak within the distribution of
the native versions. By contrast, social media and e-commerce
apps (which are situated close to the mean consumption of
Web apps) can be found towards the top of the distribution of
energy consumption for native apps.

b) Network traffic volume: Looking at the network traffic
volume (see Fig. 4), we observe a slightly lower mean and
smaller standard deviation for Web apps. This is intuitively
plausible because developers are incentivized to reduce the



TABLE VI: Descriptive statistics for the dependent variables described in Table III of the analyzed runs (*Invalid runs excluded)

APP TYPE native web

Variable e n* c m f e n* c m f
Mean 371.1275 39422545 24.22059 238682.8 12205412 567.4365 21956270 35.89417 1756048 13691591
Standard deviation 63.65198 42210598 8.961855 83187.25 7559592 65.85269 37688979 5.890589 139139 9434142
Minimum 261.1512 473403 4.84 82531.12 6387138 435.402 929802 22.57009 1542501 4955741
25% quantile 313.848 2368311 17.6412 174129.6 8823069 517.8576 4249584 32.51875 1661566 7368804
Median 359.9316 23588223 22.77656 226458.9 9610110 559.6747 8828234 35.9775 1697927 9386908
75% quantile 433.115 82428927 30.38618 289301.5 12335778 607.3942 23655925 38.5815 1861976 15314469
Maximum 524.8303 161970231 53.39976 444975 47830370 869.6102 349446077 53.78788 2198063 42525146

bandwidth requirements for Web apps, as they often have to
be re-downloaded on startup. Appearing noticeably bimodal,
the distribution is more spread out for native apps. The high
network traffic volume for social networks may be explained
by higher-resolution previews and automatic video playback.

c) Mean CPU load: The distribution of the mean CPU
load of native apps shown in Fig. 5 ranges from roughly 10%
to roughly 50% and looks like a mix between two highly
overlapping bell shapes. For Web apps the mean is at slightly
above 35% and the distribution has three narrow peaks. The
news apps form a peak at the lower end, perhaps likely due to
the fact that not much processing is required once the initial
content is loaded and displayed. Audio and video streaming
exhibit another peak above the mean, most likely due to the
continuous decoding of the incoming media.

d) Mean memory load: The stark difference in the mean
memory load of roughly 1.52 GB between native and Web
apps is observable in Fig. 6. This is similar to the findings
of [21] and [22]. A possible explanation for the memory
overhead could be the fact that Web apps run on top of the
Google Chrome browser app. Since the memory footprint of
the browser contributes to the measurements, it is plausible
that the measurements for the Web apps are higher than those
of the native versions. For other browsers, which have a higher
memory load, this effect may be even stronger as indicated by
[23, Figure 3].

e) Median frame time: Looking at the density plot in
Fig. 7, there does not seem to be a large difference between
native and Web apps with respect to this independent variable.
The only consistent outliers are the Twitch Web app and both
the native and Web app for SoundCloud. However, falling
still below 50 ms, this is not sufficient evidence for degraded
performance that would be noticeable by the user.

A. Testing for normality
As already indicated by the density plots in Fig. 3, Fig. 4,

Fig. 5, Fig. 6 and Fig. 7, the QQ plots available in the repli-
cation package (see Section IV) show that for all dependent
variables, the data for native and Web apps is not normally
distributed. This is further confirmed by the Shapiro-Wilk
tests in Table VII which shows non-normal distribution for
all dependent variables for both native and Web. Thus, we use
non-parametric tests for further analysis.

B. Hypothesis testing
The distributions of the energy consumption data points

is not normal for both native and Web, thus, we use the

TABLE VII: Results for the Shapiro-Wilk test with α = 0.05

Dependent
variable APP TYPE p-value normal

Energy consumption native 1.359× 10−10 no
web 3.557× 10−8 no

Network traffic native 1.047× 10−14 no
web 3.373× 10−24 no

Mean CPU load native 3.16× 10−5 no
web 8.012× 10−6 no

Mean memory usage native 3.177× 10−9 no
web 7.228× 10−15 no

Median frame time native 9.159× 10−24 no
web 1.084× 10−19 no

Wilcoxon signed-rank test to determine if the two populations
are different. Using, α = 0.05 we reject the null-hypothesis in
(1) that they are the same based on the p-value for the variable
e in Table IX, which is significantly smaller than α

2 .

Fig. 3: Box and density plots for energy Consumption

Fig. 4: Box and density plots for network traffic volume using
logarithmic scale

For the non-normally distributed dependent variables asso-
ciated with performance, we once again use Wilcoxon signed-
rank tests with α = 0.05. For all of them except f , the p-value
is in Table IX smaller than α

2 , confirming a difference between



TABLE VIII: Legend for data points in jitter plots

ESPN The Weather Channel LinkedIn Pinterest Coupang Shopee SoundCloud Spotify Twitch YouTube• � • � • � • � • �

Fig. 5: Box and density plots for mean CPU load

Fig. 6: Box and density plots for mean memory load

the samples. Thus, we can reject the null-hypothesis in (2) that
the populations are not different.

C. Interpretation of effect size

Since we perform exclusively non-parametric tests, we use
Cliff’s delta in order to quantify any statistically significant
difference between native and Web apps as d. A ‘negligible’
difference is indicated by |d| < 0.147, a ‘small’ difference
by 0.147 ≤ |d| < 0.33, a ‘medium’ difference by 0.33 ≤
|d| < 0.474, and a ‘large’ difference by 0.474 ≤ |d|. The sign
indicates the direction of the difference where negative means
that the values for native are lower than those for Web and
positive indicates the opposite. This interpretation is proposed
by [9]. The results of these tests are also shown in Table IX.

TABLE IX: Wilcoxon signed-rank tests for the dependent
variables (where e = energy consumption, n = network traffic
volume, c = CPU load, m = memory load and f = frame
time) with α = 0.05 to determine the differences between
native and Web with Cliff’s delta to gauge the effect size
(Interpretation following Romano et al. [9])

Variable p-value Cliff’s delta Effect size RQ
e 1.335× 10−42 -0.98384 large RQ1
n 5.948× 10−9 0.1642591 small RQ2
c 4.435× 10−29 -0.72272 large RQ2
m 9.31× 10−43 -1 large RQ2
f 5.293× 10−1 n/a n/a RQ2

Using the value obtained for Cliff’s delta and the interpre-
tation described above, we identify a large difference between

Fig. 7: Box and density plots for median frame time

native and Web in regard to energy consumption.
For the network traffic volume (n) a logarithmic scale is used
in Fig. 4 to better visualize the difference. While the median
values for native and Web differ by an order of magnitude, the
overall range of values in both samples is between 3 and 4
orders of magnitude and the values of the medians are rather
large, sitting at either side of 107, so the difference is relatively
small. This is confirmed using Cliff’s delta, which indicates
a small difference. For the CPU utilization (c) and memory
utilization (m) the effect is determined to be large using this
measure. The latter even has no overlap in the density plot in
Fig. 6. Since the maximum absolute value of Cliff’s delta is
1.0, the effect is too extreme to be meaningfully quantified by
this metric. Because there is clearly a difference in means
between native and Web, we also compute Cohen’s d for
memory utilization, which results in a value with a magnitude
of 13.23714. This also indicates a large effect size according
to [8]. For the frame time (f ), we do not compute a value for
Cliff’s delta, since there is no statistically significant difference
based on its p-value.
The shapes of all distributions are rather different, thus, we
can not make any assumptions about the difference of the
population means based on the results of the non-parametric
tests if the distributions overlap to a significant degree, such
as in the case of network traffic volume. Nonetheless, we find
a (far) more than negligible difference for the other dependent
variable. Turning again to the box plots from above, we find a
large effect size in those where the interquartile ranges do not
overlap. Those are Fig. 3, Fig. 5 and Fig. 6. This intuitively
confirms the effect sizes prescribed to them.

VI. DISCUSSION

Based on the p-values of the Wilcoxon signed-rank tests and
corresponding effect sizes obtained using Cliff’s delta from the
previous section, we proceed to answer our research questions.

For RQ1, we conclude that native apps consume signifi-
cantly less energy than their Web counterparts, with a large
effect size.

We thus recommend end users access Internet content using
native apps over Web apps to optimize the battery life of



their Android devices. However, since we did not consider
app background activity such as (location) tracking and push
notifications, which are mostly exclusive to native apps, ex-
ceptions to this rule may exist. Since there is a statistically
significant difference in the energy consumption of native and
Web apps, this may only occur in extreme cases.

For RQ2, the p-values are significantly smaller than the α
threshold for most dependent variables indicative of perfor-
mance (network traffic volume, CPU utilization, and memory
utilization). Web apps use more CPU and memory, with a sta-
tistically significant difference and large effect size. Therefore,
we conclude that native apps tend to require fewer hardware
resources than their corresponding Web versions. The network
traffic volume exhibits a statistically significant difference in
favour of native apps, with a small effect size. This is plausible
because of the diversity of our subjects. As for the frame time,
our results do not allow us to draw any conclusions.

Thus, we also recommend users to use native apps over Web
apps for accessing the Internet content when considering their
performance. For developers, it may not be realistic to expect
that the choice between native and Web apps can be made only
based on their expected energy consumption and performance.
However, they should not offer a Web app for purposes other
than user acquisition. Thus, it may be acceptable to offer only
limited functionality in the Web app while committing more
to developing a native app and encouraging users to switch
to it. Furthermore, researchers may consider the results of
this empirical study to motivate their future research on the
efficient usage of runtime resources of mobile Web apps and
Android browsers.

VII. RELATED WORK

Oliveira et al. [24] compared the energy efficiency of native
Java apps and JavaScript apps based on the Apache Cordova
framework (system WebView) running on Android 5 across
33 benchmarks using the same algorithms. In 26 cases, the
Java implementation consumed on average 1.82 and 2.09 times
energy as the JavaScript version between the two benchmark
suites (Rosetta Code and The Computer Language Benchmark
Game), but in 5 cases it consumed 1.4 times energy and time.
They noted that there seems to be no correlation between
energy efficiency and execution time and pointed out that only
Java can utilize multiprocessing. JavaScript seems favorable
in cases of multiple small computations. Furthermore, the
authors hybridized two open-source apps by re-implementing
a compute-intensive functionality using different invocation
strategies. Their experiment shows that in certain cases this
can yield a significant improvement (35.69 times less energy
consumed) without seriously impacting the maintainability of
the codebase. However, the applicability of this strategy de-
pends on the amount of computation inside the app. They later
published a follow-up study, which also includes a comparison
to C++ using the Android NDK [25], demonstrating two orders
of magnitude performance increases in an application rewritten
using a combined approach using Java and C++. The results
of our study favour native apps in terms of energy efficiency,

which is different from the results obtained by Oliveira et al.;
we conjecture that the difference in the results of these two
studies lies in the fact that Oliveira et al. focused on the energy
consumption of computation and did not consider complete
apps, including the user interface.

Ma et al. [26] compared native and Web versions of 328
popular services offered by 12 different providers on Android
4.2 and Chrome 40 to investigate if Web apps are generally less
performant. Their experiments focused heavily on energy con-
sumption and networking. Ma et al. pointed out that requests
made by Web apps are usually larger and that they generally
need to fetch more resources compared to native apps, which
typically bundle static resources. Even if some resources in
Web apps are cached, they expire rather quickly and need
to be downloaded again. This might be also an explanation
of the results we obtained in this study. Indeed, in the study
by Ma et al. Web apps tended to perform more poorly than
their native equivalent while consuming less energy. However,
in 31% of their experiments, the Web app version provided
better performance. The traffic volume was generally lower
for Web versions, and caching had the highest impact on
GET requests. The difference in utilization of TLS (handshake
overhead and cryptography) and the amount of re-fetching per
feature utilization between providers and variants caused some
significant outliers. While the study by Ma et al. reports energy
consumption and detailed Web requests, they do not include
hardware utilization and do not group or rank their study
subjects, unlike our study which considers the different types
of apps listed in Table I based on the content they offer. The
Android version used by Ma et al. is also several generations
older than the one we use in this study, and might not take
advantage of recent optimizations.

Chan-Jong-Chu et al. [27] studied the correlation between
performance scores and the energy consumption of 21 out
of the 100 most-visited Websites on the Internet, according
to the Alexa Rank. Their primary goal was to understand
how the performance of Web apps could potentially impact
the energy consumption of a mobile device. Their results
indicate a significantly lower energy consumption by Web
apps that have better performance scores. Our primary goal
is to understand the difference in energy consumption and
performance between the native and Web version of the same
app, while the authors compared different Web apps with
regard to their performance and energy consumption.

Corbalan et al. [21] compared the energy efficiency from
different frameworks for cross-platform mobile development.
The authors classified the frameworks into four different
main categories: Web Approach, Hybrid Approach, Interpreted
Approach, and Cross-Compiled Approach. Their primary goal
was to understand which of these frameworks consumed less
energy based on certain tasks performed in mobile device ex-
periments. The results show that Web and Hybrid Approaches
consume the most energy, with 3.31% and 3.03% in Android,
whilst iOS devices consumed 2.48% and 2.5%. This is in line
with the results of our study.

Metri et al. [22] compared apps and Web apps belonging



to the categories of browsers, social networking, as well as
video and music streaming across Windows 8.1, iOS 7.0.6, and
Android 4.3 tablets with respect to energy consumption and
hardware utilization. In line with our results, the results ob-
tained by Metri et al. show that native apps usually outperform
their Web counterpart in terms of energy efficiency, which
they attribute to the higher CPU utilization and lower memory
utilization. They also observed on Windows that using multiple
cores can speed up certain operations and allow them to sleep
for longer periods afterward. Furthermore, they observed the
wake-up frequency of the hardware components negatively
affects energy efficiency.

VIII. THREATS TO VALIDITY

Internal Validity. An internal threat to validity may arise
from the subject selection. Since we only select 10 subjects
from a pool of over 2.6 million as of June 2022 [28], there
may be some potential issues of misrepresenting the general
population. As a mitigation, we consider app categories, which
were previously discussed in Section III, and select exactly 2
apps for each category. This ensures a level of diversity in the
subjects.

Another threat would be browser and native app caching,
which falls under maturation internal threats since the effect
occurs on subsequent runs. Caching could lead to inconsistent
results, as the browser or native app may use saved data
instead of downloading it on subsequent runs. To mitigate this
potential threat, we clear the native app for the corresponding
subject or browser cache after every run. Thus, making the
app’s behavior consistent across runs.

Moreover, apps and their dynamic content may change
greatly over time. This means that replications of the exper-
iment may not arrive at the same results and that even the
results within the experiment may be influenced by the time of
execution. To mitigate this, we provide the exact build numbers
of all native apps which are not updated during the course
of the study. This is not possible for Web apps and HTTP
interfaces. We did not observe a change in the type of dynamic
content or update of the Web apps during the experiment.

External Validity. First, the experiment is run using only
one browser, Google Chrome. Browsers can vary in design and
implementation, and these differences could impact the metrics
like energy consumption or CPU, and memory utilization
measured in this experiment. However, since Google Chrome
is the most widely used browser across Android devices (often
coming preinstalled) with a market share of over 60% across
all mobile operating systems over the last few years [12],
no other browser on Android has a comparatively significant
market share. Thus, the selection is highly representative.

Second, similar to the browser threat, we are only running
this experiment on a single device, as described in Section IV.
The device could also be a factor in the experiment, which may
influence the outcome and thus be important to consider for
the generalizability of the results. Due to the limited scope of
the experiment, we did not mitigate this threat. However, it
is reasonable to assume that our results are a good indicator

for the average contemporary Android based smartphone, as
represented by the Nokia 6.2 (model TA-1198) test device.
Running Android version 10, which accounts for roughly
20% of all Android phones as of September 2022 [29], the
operating system version represents a significant portion of
Android devices and can be considered the future lower bound
for relevant versions. Future replications of this study might
consider different devices under different configurations.

An external threat to validity may arise from the simu-
lated interactions with the app during the experiments. Our
experiment is limited to performing a single static loop of
basic interaction with each app. Such an approach may fail to
represent how the app is used under real circumstances. This
threat is not directly mitigated due to the limited scope of the
experiment, as well as other practical reasons. It is not possible
to include certain activities such as e-commerce checkout and
posting content since providers actively prevent this by legal
and technical means. These activities would require the use
of a ‘man in the middle’ to completely simulate each remote
resource accurately, which is far from trivial. However, such
activities are less common than those which only consist of
consuming content provided through the app and which can
thus be integrated into the experiment. We further took great
care in covering the major use cases per app with the scripted
interaction to minimize the potential impact of this threat.

Construct Validity. To mitigate potential inadequate per-
operational explanation of constructs, we defined our con-
structs a priori before the experiment execution. All the
details related to the design of the experiment (e.g., the goal,
research questions, variables, data analysis procedures) was
defined before executing the experiment. We used the GQM
approach to define our goal, which then guided us to derive the
research questions of this study. The hypotheses, dependent
and independent variables, and treatments were all defined
during the planning phase of the experiment.

Conclusion Validity. First, since most of the native and
Web apps from our selected subjects contain unpredictable
interstitial advertisements, this could introduce some ‘flaky’
behavior when running the experiment. In order to achieve
consistent behavior, we had to mitigate this issue by using
an external service called dns.adguard.com for blocking
advertisements in all native and Web apps based on domain
name resolution. For some subjects, this did not remove all
advertisements. For example, Pinterest does not use a separate
domain to serve advertisements. However, this is ignored,
since the advertisements displayed on Pinterest behave sim-
ilarly to ‘normal’ posts, so the scripted interaction does not
need to handle them separately. System-wide advertisement
blocking requires technical awareness and expertise of the user
and may thus be rather uncommon, however, it has limited
effectiveness and does not influence the behavior of apps in
any significant form or their functionality.

Second, variations in device settings, such as the screen
brightness or audio playback volume, could influence the
measurements for the dependent variables. As a mitigation, we
created a custom script that is executed during the experiment



setup phase. This script is responsible for handling the state of
the device, making sure that all settings are reset as described
in detail in Section IV.

Third, another potential threat to the reliability of mea-
surements is the tools used to record the metrics, which are
the basis of the dependent variables in our experiment. Due
to the limitations of available and compatible profilers, we
could not address this issue. The Trepn profiler [30] seemed
incompatible with the device used in the experiment. Thus, all
measurements are obtained using the internal profiling tools of
the Android device as described in Table IV. Before analyzing
the data obtained from the measurements, they are scrutinized
and all invalid values are removed as described in Section V.
This only affected the metric network traffic volume and thus,
this metric is not relied on to answer our research questions.
Instead, the null hypothesis is rejected on the basis of the mean
memory load, which paints a sufficiently clear picture.

Moreover, investigating only 10 pairs of native and Web
apps would result in a very small sample with low statis-
tical power. Thus, we perform 25 repetitions, resulting in a
total of 500 data points to mitigate this threat. The number
of repetitions has been decided based on the literature on
measurement-based experiments on mobile (web) apps and
available resources.

Due to the limited number of subjects and their potentially
large heterogeneity, the dependent variables were not likely
to be normally distributed. This results in parametric tests
not being applicable. Furthermore, our non-parametric tests
may not be adequate to reject the null hypotheses which are
concerned with the population mean. This could result in
a type 1 error. This is not trivial to address. We use non-
parametric tests for non-normally distributed data instead of
transforming it. Since the effect size is either very small or
very large, we can confidently make a statement regarding the
null hypotheses.

IX. CONCLUSIONS

In this paper we conducted an empirical analysis on the
energy consumption and performance of native Android apps
and their Web counterparts. In our experiment, we selected
10 Internet content platforms across 5 categories, having 2
subjects per category. Then, we measure the energy consump-
tion, network traffic volume, CPU load, memory load, and
frame time of their native and Web versions. Our results
show that Web apps consume about 53% more energy than
their native counterparts. From our findings, we conclude that
Web apps consume significantly more energy than their native
counterparts, with a large effect size. In addition, Web apps
use more CPU and memory, with a statistically significant
difference and large effect size. The CPU utilization of Web
apps is roughly 49% higher than their native versions, yet has
a slightly lower standard deviation. The difference in memory
utilization can most likely be attributed to the overhead posed
by the Google Chrome browser. Our results do not allow us
to draw any conclusion in terms of the frame time. Based on
our findings, we suggest users to use native apps over their

Web counterparts for accessing the Internet contents, when
possible. Nevertheless, users should also consider other factors
when considering to use Web or native apps, such as: available
storage space, convenience, availability of the installed native
apps, etc.

Possible future work includes extending the experiment by
increasing the number of subjects per category to investigate
the degree of the observed variance in the measurements based
on the app category. Since the use of web browsers may have
an impact on energy consumption and performance, it will be
interesting to repeat the experiment on other web browsers.
Furthermore, it would be interesting to replicate this study on
iOS devices as it holds a global market share of 26.98% [31].
Finally, it would be interesting to investigate deeper on the
root causes of the observed differences between native and
Web mobile apps by investigating their source code, system
API calls, used programming language (e.g., Kotlin vs Java in
the case of native apps [32]), and other technical aspects.
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