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Abstract—Context. One of the primary uses of mobile devices
is to send and receive instant messages via messaging apps.
However, no evidence is still available about how receiving instant
messages impacts the energy consumption of mobile devices.
Goal. With this study we aim to empirically assess to what extent
the number and distribution of received instant messages impact
the energy consumption of Android devices.

Method. The subjects of our experiment are WhatsApp and
Telegram, two of the most known and used messaging apps. Each
run of the experiment lasts 5 minutes and is executed on a Nexus
9 Android device. The independent variables of the experiment
are: (i) the frequency of the received messages (i.e., 0, 10, 25,
50 per minute) and (ii) the distribution of messages arrival (i.e.,
evenly or in bursts). The dependent variable of the experiment
is the energy consumption of the Android device in Joules.
Results. We confirm that the energy consumption of the Android
device tends to be proportional with the number of received mes-
sages across both apps. When the number of received messages is
fixed, the frequency of their arrival does not significantly impact
the energy consumption of the Android device.

Conclusions. This study provides evidence that receiving instant
messages can largely reduce the battery life of a user’s Android
device, even when the number of received messages is relatively
low (i.e., 10 messages per minute). Moreover, sending bursts of
messages does not lead to significant changes in terms of energy
consumption. Developers can use this information to develop
new features for their Instant Messaging apps for aggressively
bundling messages without the risk of impacting the energy
consumption of end users’ devices.

Index Terms—Empirical study, Energy consumption, Android,
Instant messaging

I. INTRODUCTION

Today, more and more people tend to use mobile devices at
a high frequency for social interaction from everywhere and at
any time. Therefore, mobile instant message (IM) applications
continue to rise in popularity and play an important role in
users’ social life. For instance, WhatsApp, which is one of
the most popular messaging applications worldwide, has two
billion active users on a monthly basis as of July 2020 [11].

At the same time, energy consumption has gradually be-
come a major challenge for developers and mobile device
vendors since it can have a significant effect on user expe-
rience. For instance, users have an Always-on mentality [5]
and might need to frequently charge their mobile devices or
even plug in mobile power banks if the battery runs low
quickly. Not only the hardware (e.g., the display, cameras,
network antenna) consumes energy, but also the software can
affect the energy consumption of mobile devices [22]. When

a mobile application is running, the energy consumption not
only depends on the installed code, but also on how the
user interacts with the application [27]. For example, the
energy consumption of an IM application can be affected by
the frequency and the number of instant messages sent and
received by the user with their contacts.

When considering IM apps running on mobile devices,
instant messages are generally received as push notifications
[1]. Push notifications are messages generated in the Cloud
and asynchronously received by a mobile app. Intuitively,
Android push notifications work as follows. On the Android
platform, there are a lot of services that provide push notifica-
tions functions for devices powered by the Android operating
system. Most of those services are basically the Firebase Cloud
Messaging (FCM) services. In order to push messages, the
FCM needs to be integrated into the application. To push
messages, a third-party server (e.g, WhatsApp server) sends
a message request to the mobile notification service’s (e.g.,
FCM) server. After that, the mobile notification service’s
server transmits the request to the user’s device. In its turn, the
Android operating system running onboard the device checks
the received information to associate it to the corresponding
application and display it to the user.

For instant messaging applications, push notifications usu-
ally include notification icon in the status bar, messages in
the notification drawer, heads up notification (from Android
5.0) and lock screen notification display (from Android 5.0).
There are a few factors in message reception which can
effect the energy consumption of a device, such as the setting
of volume and vibration, the frequencies and distribution of
messages received, and also, the post limit. To reduce the
interruption from the notifications, developers usually tend
to group the separate notifications into a group (available on
Android 7.0 and higher), which means that the group allows
users to collapse multiple notifications into just one post in the
notification drawer. The user can then expand the notification
to reveal the details for each individual notification [2].

The goal of this study is to assess the impact of instant
messaging on the energy consumption of Android devices.
Specifically, we empirically assess to what extent the num-
ber and distribution of received instant messages impact the
energy consumption of Android devices running IM apps.

The design of the experiment is based on the following
experimental variables. The independent variables of the ex-



periment are: (i) the frequency of received messages (i.e., 0,
10, 25, 50 per minute) and (ii) the distribution of arrival of the
messages (i.e., evenly or in bursts). The dependent variable of
the experiment is the energy consumption of the Android de-
vice in Joules. The subjects of our experiment are WhatsApp!
and Telegram?. With a total number of monthly active users of
2.4 billion in July 2020, WhatsApp and Telegram are two of
the most widely-used messaging applications in the Android
app store [11]. Each run of the experiment has a fixed duration
of 5 minutes and it is executed on a real mobile device (i.e., an
HTC Nexus 9). After having collected the measurement data
for more than 300 independent runs, we statistically assess
how energy consumption varies according to our empirical
variables.

The main results of this study are that receiving instant
messages can largely reduce the battery life of a user’s
Android device, even when the number of received messages
is relatively low (i.e., 10 messages per minute). Moreover,
the study provides evidence that receiving instant messages
either in bursts or evenly over time does not lead to significant
differences in terms of energy consumption.

The target audience of this study is composed of both end
users and developers. Indeed, the results of our experiment are
relevant for both end users and developers alike. Specifically,
we discover that (i) receiving instant messages can largely
reduce the battery life of a user’s Android device, even when
the frequency of received messages is relatively low (i.e., 10
messages per minute) and (ii) receiving bursts of messages
does not lead to a statistically significant difference in terms
of energy consumption.

The remainder of this paper is structured as follows. Section
IT discusses related work and the study design is reported in
Section III. The results of the study are reported in Section
V and discussed in Section VI, whereas threats to validity are
elaborated in Section VII. Section VIII closes the paper.

II. RELATED WORK

Burgstahler et al. analysed the energy consumption of two
types of mobile communication approaches: push notifications
and pull-based notifications [7]. The study covers in depth the
evaluation of the energy impact on mobile devices of classic
push notifications and compares them with a new solution
proposed by the authors. In order to obtain precise results,
the researchers used an external measurement device. The
original battery was separated from the device and connected
to special dummy battery in the phone with modified charging
cradle in-between to intercept the power connection between
the battery and the device. For push notifications, Google
Cloud Messaging was used in encrypted and non-encrypted
versions. The results of the study revealed that up to 7%
improvement in battery consumption can be achieved by
switching between the push and pull communication approach
since they have different impacts on notification latency and

Thttps://play.google.com/store/apps/details ?id=com.whatsapp
Zhttps://play.google.com/store/apps/details?id=org.telegram.messenger

power consumption. Switching between them depending on
the context turned out to be more energy efficient. Our study
complements the work by Burgstahler et al. since we target
the number and distribution of messages receiving via a
push-notification communication mechanism, which is the one
officially employed by the Android platform.

Chowdhury et al. [10] studied whether maintaining the
logs created by the applications to monitor their behaviour
impacts battery performance. In order to profile the tested
applications, GreenMiner was used. The study found that in
most applications logging has little to no impact on the energy
consumption, however in about 80% of cases there was at least
one version of an application that impacted the battery in a
significant manner. Although this paper focuses on a different
aspect of mobile application profiling, the goals of measuring
the energy usage and empirical methodology are similar.

Acer et al. [3] focused on energy efficient scheduling of
push notifications. It argues that due to the sporadic nature of
such messages and very small size, sending them immediately
to the users device comes with a large cost to both energy
consumption and network load. The authors come forward
with the network-centric scheduling of push notifications that
delays their delivery based on the predictions of users’ network
activities, allowing for sending multiple push messages at once
instead of multiple messages over time. Although the overall
goals of the paper differ from ours, it allows for more in-depth
analysis of the network cost of push notifications. The energy
needed to receive the push notification in a low coverage area
where the phone might operate using more broadcasting power
for a longer duration to communicate with the remote server
through the base station might be one of the factors leading
to increased energy usage.

Ding Li et al. analysed the energy consumption of Android
applications analysing 405 real world market applications [21].
One of the outcomes of the analysis is that 61% of their energy
consumption occurs during their idle states with network being
the most energy consuming component. Even though our paper
specifically targets push notifications, it is complementary to
the one by Ding Li et al. since we consider different workloads
and workload distributions of message reception during our
experiment.

Yongmin Choi et al. [9] argues that new mobile applications
cause frequent changes between connected and idle states
of the radio equipment in the mobile devices leading to
increased power consumption. Although this work focuses on
the network aspects of the applications it shows again that
the idle activity of mobile apps can bear heavy impact on the
battery life of mobile devices.

III. STUDY DESIGN

This section presents the main points of the study design.
We refer the reader to the replication package of the study?
for more details on the research method, tools, and collected
data. The replication package contains all the information for

3https://github.com/S2- group/mobilesoft-2021-replication-package



independent verification and replication of the study, namely:
(i) the Python scripts for executing the experiment, (ii) the raw
data containing all the measures collected during the execution
of the experiment, (iii) the R scripts for analysing the collected
data, and (iv) a detailed guide for replicating the experiment.

A. Goal and Research Questions

We define the goal of this study by following the template
presented by Wohlin et al. in [32]. Table I shows our goal
formulation.

Object of study IM app’s message reception

Purpose Assessing
Quality of focus  Energy Consumption
Perspective End users and app developers
Context Android mobile devices

TABLE I: Goal definition of our study

To achieve the aforementioned goal, this study aims to
provide a clear and accurate response to the two research
questions depicted below.

RQ1: What is the impact of receiving messages in IM apps at
different frequencies on the energy consumption of Android
devices?

Answering this research question helps app users in making
better choices on using IM applications, e.g., by choosing the
ones that fit better the typical amount of received messages.
App developers and Android maintainers can benefit from our
answer to RQ1 because they will obtain evidence about how
receiving IM-related push notifications can impact the energy
consumption of an Android device under different workloads.

To answer this question, we compute the energy consump-
tion of messages received by two messaging applications.
More specifically, those applications are WhatsApp and Tele-
gram. Those applications were selected based on their wide
global popularity and their ability to perform automated mes-
saging; a crucial requirement for conducting the experiment.
The energy consumption is measured within a specific window
of time for a set number of messages, received evenly at fixed
time intervals. Those trials will be referred to as active state
trials and the measurements taken during those trials (for each
application) will be normalized using the measurements of idle
state trials, referred to as the trials during which no messages
are received but where the application runs in background.
RQ2: What is the impact of receiving messages in IM apps
with different distributions on the energy consumption of
Android devices?

By answering this research question we offer insights on
the potential impact of bulk message reception on energy
consumption. It is usual behavior to have messaging appli-
cations running in the background and receiving messages as
they come, on a continuous basis. In this study, we compare
this behaviour to the one where the time between messages
is larger, but they arrive in bulk. The insights gained from
such comparison can help developers in taking better informed
decisions about how to issue push notifications to users (e.g.,
by aggressively bundling them), specially to the ones who

typically receive a large number of messages. The literature
already confirmed that bundling HTTP requests reduces energy
consumption without imposing significant runtime overhead in
Android apps [24]; our answer to RQ2 will fill a similar gap
in the context of push notifications.

To provide an answer to this research question, we once
again measure the energy consumption of WhatsApp and
Telegram. However, this time the messages are received in
short bursts, such as the total amount of messages received
remains the same but they are received in short periods of
time rather than evenly distributed. The idle state trials will
remain the same.

B. Subjects Selection

In order to produce results as close to the real-world use
case scenario we have decided to use two popular messaging
applications — WhatsApp and Telegram [11]. They have been
chosen due to (i) their popularity and (ii) the availability
of well-documented tools for programmatically sending mes-
sages to them (see Section IV); the latter point is particularly
important for the viability of the experiment, where we need
to reliably send several hundreds of messages during the
execution of the experiment.

C. Experimental Variables and Hypotheses

This experiment has two independent variables, one for each
research question. For RQI1, the independent variable is the
frequency of the messages received by the application for
the whole duration of the run (i.e., 5 minutes). We defined
four treatments for this variable, namely:

o Idle: the IM app does not receive any messages during
the whole duration of the run, it acts as the baseline for
our experiment;

e Low: the IM app receives 10 messages per minute;

o Medium: the IM app receives 25 messages per minute;

e High: the IM app receives 50 messages per minute;

For every treatment, messages are always randomly distributed
over the 1-minute time window.

For RQ2, the independent variable is the distribution of
arrival of the messages within a time window of one minute.
This variable has two treatments:

e Even: in every minute of the run, messages are received
with an even distribution over time;

o Burst: messages are received all at once at the beginning
of every minute of the run.

It is important to note that, in order to be able to observe
possible effects of the distribution of arrival of messages, for
RQ2 we are always sending 50 messages per minute.

For both RQ1 and RQ2, the dependent variable is the
energy consumption in Joules of the Android device. We
measure energy consumption by using Trepn, a software-based
power profiler for Android devices. Trepn is widely used in
empirical studies on energy-efficient software [26], [13], [19]
and it has been reported as sufficiently accurate with respect
to hardware power measurement (e.g., the Monsoon Power



Monitor*), with an error margin of 99% [18]. The energy
consumption F of each run of the experiment is computed by
(i) measuring the average power P consumed by the Android
device (in microWatts) and (ii) applying the following formula
for obtaining the total amount of consumed energy in Joules
during the 5-minutes window of each run:

P

The null hypothesis for answering RQ1 states that the
average energy consumption of the Android device does not
significantly differ across all frequencies of received messages;
we formally formulate it as follows.

RQ1
HO @ * Hidle = Hlow = Mmedium = Hhigh 2)

where p is the average energy consumption of the IM apps
across the idle, low, medium, and high treatments of the
frequency independent variable.

The alternative hypothesis for RQ1 states that the average
energy consumption of the device is significantly different
for at least one pair of considered frequencies; we formally
formulate it as follows.

HEQL . 35 j € {idle,low, medium, high} : pu; # p; Ni # j
3)
For RQ2, we are interested in the distribution of the arrival
of the messages and it states that the average energy consump-
tion of the Android device does not significantly differ when
receiving messages either evenly or in bursts; we formally
formulate it as follows.
[{ORQ2 * Heven = Mburst “4)
The alternative hypothesis for RQ2 states that the average
energy consumption of the device is significantly different
when messages arrive with different distributions; we formally
formulate it as follows.

HlRQ2 * Heven 7é Hourst (5)

D. Experiment Design

We designed this study so to investigate on each research
question in isolation. This decision is due to the fact that
(i) for each RQ we want to have a complete design (i.e., to
cover all combinations of subjects and treatments) and (ii)
we want to keep the random distribution of message arrivals
when answering RQ1 (this is in contrast with the even/burst
distributions we consider in RQ2).

TABLE II: Trials for answering RQ1 (examples)

idle | low | medium | high
WhatsApp | 1st 3rd | 2nd 4th
Telegram 2nd | Ist 4th 3rd

30 repetitions for each trial

“https://www.msoon.com

For answering RQ1 we adopt a randomized complete design
[32]. Having a complete design allows us to investigate all
possible treatments in the context of all subjects. Table II
presents the trials resulting from such design, where each
treatment is applied to both the selected subjects (i.e., What-
sApp or Telegram) in a random order for 30 times. We
repeated every trial of the experiment 30 times in order to
take into account possible fluctuations of the measured energy
consumption [4]. The estimated running time for answering
RQI is (2 x 4 x 30) x bm = 1,200m = 20h since we are
considering 2 IM apps, 4 treatments, 30 repetitions per trial,
and 5 minutes per run.

TABLE III: Trials for answering RQ2 (examples)

even | burst
WhatsApp | Ist 2nd
Telegram 2nd Ist
30 repetitions for each trial

We apply a randomized complete design also for answering
RQ2 with one factor (i.e., the distribution of the received
messages), two treatments (i.e., even and burst), and 2 subjects
(i.e, WhatsApp and Telegram). Table III shows the trials
used according to the mentioned design. The running time
for answering RQ2 is (2 x 2 x 30) x 5m = 600m = 10h. Also
in this case we repeat every trial 30 times.

E. Data Analysis

The data analysis related to each research question consists
of three main phases: data exploration, hypothesis testing, and
effect size estimation.

In the data exploration phase we aim at obtaining a pre-
liminary understanding of the obtained energy measures. We
compute summary statistics of the obtained measures and
visualize them by means of density plots, box plots, and
histograms.

In the hypothesis testing phase we aim at answering the
research questions of the study by applying statistical tests.
For RQ1 we plan to use the One-Way ANOVA statistical test
since our independent variable has more than two treatments.
If the assumptions of the ANOVA test are not met, then we will
apply a non-parametric one, i.e., the Kruskal Wallis statistical
test [20]. In order to identify which pairs of treatmets are
significantly different, we apply the Dunn Test as post-hoc
analysis [15] (with Benjamini-Hochberg correction to reduce
the chances of Type-I errors). Differently, when answering
RQ2 we plan to use a statistical test fitting a 1-factor-2-
treatments study design, i.e., the paired t-test [29]. If the
assumptions of the mentioned statistical test are not met by the
collected measures, then we apply a non-parametric statistical
test, i.e., the Wilcoxon Rank-Sum test [17]. All statistical tests
are executed with with o = 0.05.

Finally, we assess the magnitude of the differences among
the considered treatments via the Cliff’s Delta effect size mea-
sure [12]. The Cliff Delta is a non-parametric measure of effect
size for ordinal variables and it does make any assumptions
about the distributions being compared. The values of the Cliff



Delta measures are interpreted according to the guidelines
proposed by Grissom et al. [16] and reported according to the
following ranges: negligible, small, medium, and large [16].

IV. EXPERIMENT EXECUTION

This section provides the technical details of the infrastruc-
ture we setup for executing the experiment, as well as the
various software tools and hardware devices we used.

As shown in Figure 1, the main components for executing
the experiment are three: (i) a laptop for executing the orches-
tration logic of the experiment and for collecting the measures
from the Android device, (ii) an Android device for running
the subjects of the experiment, and (iii) the Cloud hosting the
APIs for delivering the instant messages.

For orchestrating the execution of all the runs of the
experiment we make use of Android Runner [25]. Android
Runner is a Python framework for automatically executing ex-
periments involving both native and web applications running
on Android-based devices. In accordance to Android Runner,
we define our experiment in a descriptive manner as a JSSON
file, and then the full execution of the experiment is managed
by the tool via a combination of Python scripts and Android
Debug Bridge (ADB) commands.

In our experiment, Android Runner is executed on a laptop
running MacOS Catalina 10.15.6 with a 2.2 GHz 6-Core Intel
Core i7-8750H processor and 16Gb of memory.

The technical specifications of the Android device on which
the subjects are running are reported below.

o Manufacturer: HTC

e Model: Nexus 9

o Android Version: 7.1.1
e CPU: Nvidia Tegra K1
e Memory: 2 GB

Both the laptop and the Nexus 9 run under the same Wifi
network with a speed of 100 Mbps. To ensure that the Wi-
Fi conditions do not alter the results of the experiment, the
Nexus 9 and the laptop are the only devices connected to the
network and they are always placed at the same distance from
the Wi-Fi router. Further, we take special care in keeping the
execution environment as clean as possible, specifically: the
Nexus 9 is loaded with a clean installation of the Android OS,
it has been configured so to do not perform any OS updates, all
third-party apps have been uninstalled, and push notifications
for apps different from Telegram and WhatsApp have been
disabled as well. The specific versions of the subjects of the
experiments are reported below:

o Telegram - v7.0.1 (released on 22.08.2020)
o WhatsApp - v2.20.199.14 (released on 15.09.2020)

With the laptop connected to the Nexus 9, the first steps for
executing a run of the experiment are: (i) to stop all previously
running apps (step 1 in Figure 1) and (ii) to start the Trepn
energy profiler (step 2). Trepn is distributed as an Android
application and, thanks to the private APIs provided by the
Qualcomm CPU mounted on the Nexus 9 device, it is able to
accurately measure the energy consumed by the device itself.
In this specific phase of the run, Trepn is active, but it is still

Telegram API

Whatsapp API

6. HTTP Response

5. HTTP request
to establish connection

s

Local storage

]

confirming authentication

Python Scripts e
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to send !
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,,,,,,,,,,,,,,,,,,,,,, ' 1
' 1
3a. Starts one ' '
4. Start custom : T e
python scripts messaging application 3p, $tarts
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Fig. 1: Overview of the measurement infrastructure and performed steps while executing a run of the experiment



not profiling the energy consumed by the Nexus 9 device.

Then, in step 3 we (i) start the IM app to be measured (i.e.,
either WhatsApp or Telegram, depending on the plan of the
runs created by Android Runner) and (ii) start collecting data
about energy consumption via Trepn.

As shown in Figure 1, in addition to Android Runner, we
use a series of python scripts to interact with each application’s
API and send messages programmatically (step 4-8). The
messages are sent using custom Python scripts interacting
with the application’s API, following the experiment planning
described previously. The decision to use custom Python
scripts was made to have full control over the experiment
execution and more flexibility on the time intervals between
each message. These scripts use the following Python libraries
for each IM app: Telethon for Telegram and Selenium for
WhatsApp. Since WhatsApp does not provide a set of APIs
to programmatically send instant messages, we use a second
Android device to send the WhatsApp messages. The technical
specifications of the second device for sending WhatsApp
messages are not relevant for the experiment since they do not
have an effect on the energy consumption of device receiving
the messages.

Finally, after 5 minutes of running-and-profiling time, the
current run is stopped and the data collected by Trepn is
fetched and saved locally on the laptop (step 9).

In order to take into account the intrinsic variability of
energy measurement, we take the following precautions: (i)
the order of execution of the experiment runs is randomized,
(i1) the measurement of each IM app is repeated 30 times, (iii)
between each run the Nexus 9 remains idle for 2 minutes so
to take into account tail energy usage, i.e., the phenomenon
where where certain hardware components of mobile devices
are optimistically kept active by the OS to avoid startup energy
costs [23], and (iv) the IM apps are cleared before each run
so to reset their cache and persisted data.

V. RESULTS

In this section we report the obtained results according to
the research questions of the study.

A. Impact of receiving IMs at different frequencies (RQI)

Data exploration. Figure 2 and Table IV give an overview
of the energy consumed in each run of the experiment. The
average energy consumption of the devices in the time slot
of 5 minutes is 18.391 Joules, although there are some cases
where the energy consumption is comparatively large (e.g.,
143.949 joules). The skewness of the energy consumption is
2.812, which implies that the data is not symmetrical.

TABLE IV: Descriptive statistics for RQ1

Energy (Joules)

Minimum 4.016
Ist quartile  7.346
Median 12.779
Mean 18.391
3rd quartile  23.030
Maximum 143.949
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Fig. 2: Frequency of the energy consumption values (RQ1)

Figure 3 and Table V show a visualization and summary
statistics of the energy consumption of the Android device
across the four treatments of the distribution variable. We can
observe that the energy consumption of the Android device
grows with the increase of the numbers of received messages
per minute.

It is also interesting to note that: (i) the energy measures
of the idle treatment are very compact, this can be considered
as a good indication of the reliability of our measurement
infrastructure, and (ii) the variance of the energy measures
increases when considering higher frequencies of arrival of
instant messages, this phenomenon might be due to the best
effort model of Android push notifications or the platform/OS
managing push notifications differently (e.g., grouping); a deep
investigation of this phenomenon is left for future work.
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Fig. 3: Energy Consumption for each treatment in RQ1

TABLE V: Energy Consumption for each treatment in RQ1

Energy Consumption (Joules)
Treatment |—gro Median | QI Q3
Idle 6.064959 5.231174 4.484845 5.907169
Low 13.530337 | 9.368802 8.648248 18.968561
Medium 25.008157 | 16.140350 | 13.169032 | 30.774704
High 28.960692 | 20.766082 | 16.098280 | 38.774762




Figure 4 and Table VI present the measured energy con-
sumption across the two subjects of the experiment. It can be
seen that when the system is idle or with low workload, the
two apps consume a similar amount of energy. Differently,
when the number of received messages is medium and high,
Whatsapp messages tend to consume more energy than Tele-
gram messages. Also, the energy consumption of Whatsapp
tends to have a higher variance than Telegram.

150 .
Telegram
3 E] WhatsApp
S
5 100
S
>
17}
c
Q
o
> 50
>
2
b ? ] |
0
Idle Low Medium High

Frequency of messages

Fig. 4: Energy consumption for different treatments of Telegram
and Whatsapp

Treat- . Energy Consumption (Joules)

ment Subject SD Mean  Median Min Max

Idle Telegram 2.160 6.355 5.633 4.866 14.835
WhatsApp 3.576 5.774 4.481 4.016 18.880

Low Telegram 4.574  10.789 8.648 8.000 22.372
WhatsApp 8.038  16.271 10.064 8.942 28.380

Medium Telegram 7.331  17.004 13.135  11.295 35.070
WhatsApp | 26.530 33.013 22.657 14.543  143.949

High Telegram 8.831  20.199 17.438 5.402 40.696
WhatsApp | 26.258 37.722  29.315 4.167 80.191

TABLE VI: Energy consumption for different treatments of
Telegram and Whatsapp

Hypothesis testing. Since our dependent variable(energy con-
sumption) is continuous, and the samples are independent, we
need firstly check whether the distribution of the dependent
variable in the four treatments is normal. The density plots
of the energy consumption for the four treatments are shown
in Figure 5. These density plots help us to get an initial
indication about the distribution of the energy consumption
for each treatment. It can be seen in the figures that all of the
distributions in the four groups seem to be not normal. We
apply the Shapiro-Wilk normality test to statistically assess
the normality of the data related to the four treatments. Table
VII shows the p-values of the Shapiro-Wilk test. All of them
are lower than the significance threshold, thus we can reject the
null hypothesis that the distribution of the data is normal. The
skewness of each group is also calculated, and we obtained
the following results: idle=2.80, low=0.98, medium=3.45, and
high=1.08. In fact, if we refer to Figure 5, we can observe
that the density of the energy consumption has a peak at the
lower values of the data.

Moreover, the normality check for the distribution of resid-
uals is conducted. The p-value of the Shapiro-Wilk normality
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Fig. 5: Density plots of the four treatments of the frequency
variable

test of residuals is 2.2e-16, which means that the distribution
of the residuals is not normal, either.

TABLE VII: P-values of the Shapiro-Wilk normality test

Messages frequency  p-value

Idle 1.406842e-11
Low 1.237924e-09
Medium 2.214018e-11
High 1.886828e-06

The Levene’s Test for homogeneity of variance is also
applied to check the homoscedasticity of data. The p-value
of the Levene’s test is 6.928e-08, which is less than our
significance threshold, so it can be deducted that the variance
across the treatments is statistically significantly different, and
the assumption of homoscedasticity is not met. In conclusion,
given that (i) our data is not normally distributed in all of the



four treatments, (ii) the residuals are not normally distributed
either, and (iii) the variance is not homogeneous, we apply the
Kruskal-Wallis statistical test for RQI.

The application of the Kruskal-Wallis test produced a p-
value of 2.2e-16, which is lower than our significance thresh-
old (i.e.,, 0.05). Therefore, we can reject the null hypothesis
Hé{Ql, which states that the energy consumption of the
Android device is the same for all treatments can be rejected.
This result provides evidence that receiving instant messages at
different frequencies has an impact on the energy consumption
of Android devices.

TABLE VIII: Adjusted p-values of the Dunn’s test

Treatments p-value Significance
idle - low 9.683172e-09 v’

idle - medium  8.001321e-21 v’

idle - high 9.994922¢-22 v’

low - medium  3.501339e-04 v’

low - high 1.396984¢-04 v’
medium - high  7.753923¢-01 -

In order to identify the frequencies of message arrival with
higher impact on energy consumption, we apply the Dunn’s
test for the non-parametric pairwise multiple comparison be-
tween the four different treatments. The p-value adjustment
with Benjamini-Hochberg method is also applied to avoid
the higher probability of getting statistically significant results
when doing multiple comparisons. As shown in Table VIII,
almost all pairs of treatments exhibit a statistically significant
difference, with the exception of the medium-high pair.
Effect size estimation. Effect size is a quantitative measure
of the magnitude of the difference among groups, which can
help us to acknowledge the strength of a phenomenon. An
effect size can be used to explain how important a difference
is: large effect sizes mean the difference is important, while
small effect sizes mean the difference is unimportant [30].

TABLE IX: Effect size measures for RQ1

Treatments Effect size

idle - low 0.866 (large)
idle - medium 0.951 (large)
idle - high 0.834 (large)
low - medium 0.591 (large)
low - high 0.452 (medium)

medium - high -

As shown in Table IX, we found a large effect size between
all pairs involving the baseline (i.e., the idle treatment). When
considering the low treatment we found a large effect size with
respect to the medium treatment and a medium effect size with
respect to the high treatment. Finally, as expected, we found a
small effect size when considering the medium - high pair (it
was already exhibiting a statistically insignificant difference
according to our Dunn’s test).

B. Impact of receiving IMs with different distributions (RQ2)

Data exploration. Figure 6 and Table X give an overview
of the measurement data we collected across the even and
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Fig. 6: Energy Consumption for each treatment in RQ2

TABLE X: Energy Consumption for each treatment in RQ2

Energy Consumption (Joules)

Treatment Min Median | Mean Max
Even 4249 | 22.525 30.058 | 80.191
Burst 7.641 | 22.171 21.142 | 90.999

burst messages distributions. The median values of the two
treatments are similar. This could be the result of the same
total message amount for each treatment. The mean value of
the even treatment is higher than the mean value of the burst
treatment, due to the presence of more outliers and more data
points in the first quartile.

Hypothesis testing. In order to apply the (parametric) t-test,
we need to check if the data meets its assumptions. The first
assumption of the t-test is about the normal distribution of
the data to be analyzed. Figure 7 presents the density of the
energy consumption of the device for each treatment. From a
visual inspection, the data belonging to both treatments seems
to be not normally distributed.
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Fig. 7: Density plots of the treatments of the distribution
variable



We statistically assess the normality of the data via
the Shapiro-Wilk normality test. The obtained p-values are:
7.379e-05 for the even treatment and 8.303e-07 for the burst
treatment. This means that we can reject the null hypothesis
that our collected data lies within a normal distribution, in
turn providing statistical evidence that our collected data is
not normally distributed.

Since the assumption of normal distribution is not met, we

need to apply a non-parametric statistical test. As discussed
in Section III-E, we apply the Wilcoxon Rank-Sum test. We
obtained a p-value of 0.061, which is slightly higher than the
significance level of 0.05. Thus, we cannot reject the null hy-
pothesis [ é% 92 and we cannot claim that different distributions
of the arrival of instant messages impact differently the energy
consumption of an Android device.
Effect size estimation. As expected, the value of Cliff’s
Delta measure is small (0.244), meaning that the energy
consumption of the Android device is similar across the even
and burst frequencies of arrival of instant messages.

VI. DISCUSSION

With the help of statistical tests and the data analysis, our
two research questions can be answered. The conclusion for
the first research question is that generally the energy con-
sumption grows with the number of received instant messages;
nevertheless, such growth is not obvious when considering
the medium and high treatments. Although it is a natural
outcome that energy consumption increases with message
load, it is important to validate it through statistical analysis.
These results also set the stage for future research which can
further investigate the rate of increase in power consumption
compared to the message load. As presented in our experiment
results, there is no significant difference between the medium
and high workload, indicating there might be a cut-off point
at which additional messages do not add relevant overhead for
Android systems. Further investigations are needed to provide
evidence about this specific point. For developers, there might
be an opportunity to reduce energy consumption of messages
by investigating this cut-off point.

For the second research question, our study does not provide
evidence that the distribution of messages received on the An-
droid device has a significant impact on energy consumption.
Nevertheless, in Figures 6 and 7 we can observe that evenly
receiving messages impacts energy consumption slightly more
than receiving messages in bursts. We conjecture that this
slight difference might be due to tail energy consumption,
i.e.,, the phenomenon where components such as the network
card remain in high power states after completing a task
(e.g., receiving a push notification) [28], [8]. Techniques for
mitigating this possible cause of energy drain exist, such as
the batch operation pattern presented in [14]. The results we
obtained for RQ2 include valuable information for end users
and developers alike. On the one hand, end users can trust
the Android platform when dealing with sudden bursts of
messages, which might not drain the battery of their devices.
On the other hand, developers could use this information

to develop new features for their IM applications, such as
an advanced “do not disturb” mode which does not let the
messages go through until it is turned off, without impacting
the energy consumption.

Our answers to the two research questions of this study
can guide Android users in using their device in a more
efficient way, specially when they need to save energy or
when their battery is low. For example, users can turn off the
notifications of their IM applications when the battery of the
device is low. Also, our findings might help the developers
acknowledge the energy consumption of devices when the
messaging applications are working, and also provide insights
about the energy efficient design of messaging applications
on the Android platform (e.g., by providing mechanisms for
automatically turning off the notifications of IM apps when
the battery is low).

VII. THREATS TO VALIDITY

A careful analysis of the threats to validity of an experiment
is essential to assess its scientific validity and to contextualize
it to other experiments [32]. Every design choice can bring an
array of threats which must be identified and clearly presented
alongside the experiment results. Therefore, in this section, we
discuss some possible threats to the validity of our study.

A. External Validity

The experiment we conducted considers two subjects —
WhatsApp and Telegram. This can be considered too lit-
tle subjects to generalise our conclusions on all messaging
applications. However, those two applications are amongst
the most used instant messaging apps in the Google Play
Store and our experiment can be replicated on other subjects
with relatively low effort. Future experiments may include
additional subject such as Facebook Messenger or WeChat,
such that the subjects are more representative of the general
population of IM applications.

The frequency (i.e., 0, 10, 25, and 50 per minute) and
distribution of arrival (even and burst) of IMs have been
defined so to facilitate the execution and reporting of the
experiment, and its replication by third parties. Clearly, in a
realistic scenario, users might not receive messages exactly at
those intervals. Although the definition and usage of realistic
intervals is out of the scope of this study, this design decision
can have an impact on the external validity since the obtained
results might not directly generalize to real usages of IM apps.

As hardware device, we used an HTC Nexus 9, which is
a relatively modern device with common hardware specifica-
tions. With this choice we can be reasonably sure to have
a realistic experiment that can directly translate into a real
world scenario. Nevertheless, newer devices running newer
Android releases may lead to different energy measurements;
further replications of the performed experiments can help in
mitigating this potential threat to validity.

B. Internal Validity

There is a very small chance that measurements across trials
vary due to external factors that change slightly between trials,



such as a background processes running sporadically in the
operating system, garbage collection, etc. We applied several
strategies to mitigate this effect, such as: we randomized the
order of subjects and treatments for each trial, we completely
reset the subjects of the experiment at every run, we impose
a cool-down period of 2 minutes between each run, etc.
Therefore, the risk of a previous trial or a random background
process affecting the measurements of a run of the experiment
are greatly reduced.

The energy consumption measures were done using a single
method, namely Trepn. This means the measurement of this
tool could not be corroborated with a second tool. Neverthe-
less, we are reasonably confident about the reliability of our
measures since Trepn is well-accepted and used power profiler
in the software engineering community and its measurements
accuracy has been shown to be accurate when compared to
hardware-based profilers [18].

The reliability of the measures can be affected by various
factors, such as the brightness of the display, the network
conditions, etc.. In order to mitigate possible biases, we fixed
those external factors. For example, the brightness of the
screen of the device was always set to the minimum, the
distance from the WiFi access point was kept constant, etc.

Finally, being the two experimental subjects commercial
(closed-source) apps, we do not have any indication about
whether they are implementing some message bundling tech-
niques. The existence of internal message bundling techniques
might potentially influence the results of our experiment,
specially the ones related to RQ2. Nevertheless, given the long
execution time of our runs and the relatively large resolution
of considered time slots (i.e., 1 minute), we are reasonably
confident that our even and burst treatments predicate on a
more large grain with respect to the (possibly micro-)bundling
techniques of Telegram and WhatsApp. We leave the study of
the internal bundling mechanisms of IM apps for future work.

C. Conclusion Validity

To mitigate this type of threats, we used a fixed number
of treatments for our experiments, with 2 subjects. Overall, 2
messaging applications were executed 30 times per messaging
app and per treatment. As a result, we have total sample size
of 360, which is relatively large for a measurement-based
experiment.

Moreover, before performing the statistical analysis, we
made sure to check whether the assumptions of the used
statistical tests are met (e.g., data normality). This helped us
to ensure that the appropriate tests are performed on the data.

Finally, it is important to note that in our hypothesis testing
we combined the data for WhatsApp and Telegram. If on one
side this allows us to mitigate the risk of fishing, on the other
side it might have masked a potential phenomenon happening
only for one of the two apps. We leave a more fine-grained
statistical analysis for future work.

D. Construct Validity

We used the Goal-Question-Metric method [6], [31] to
define a priori the main components of the experiment. The

goal of our experiment as well as the questions related to
this goal and the metrics that are relevant to answer those
questions have been formalized in a GQM-tree (it is part of
the replication package). Using the GQM method, we also
formulated the hypotheses to address the research questions
and identified the independent and dependent variables for our
experiment.

When answering RQ2, we are always sending 50 messages
per minute. This design decision is due to the need of
clearly observe possible effects of the distribution of arrival of
messages. A potentially interesting future work of this study
would include the investigation of how different frequencies
of messages (i.e.,, 0, 10, 25, 50) might correlate with the
distribution of arrival of messages (e.g., a burst of 50 messages
might behave differently from an energy point of view with
respect to a burst of 10 messages).

Finally, a complete replication package is publicly available
for independent verification and inspection of each step of the
performed experiment.

VIII. CONCLUSIONS

In this article we measure the energy impact of the messag-
ing applications notifications on a mobile device running the
Android operating system. In our experiment we compared
the energy consumption of the device while running the
WhatsApp and Telegram apps. Our empirical variables are
two, namely: the frequency of the received messages (i.e., 0,
10, 25, 50 per minute) and (ii) the distribution of messages
arrival (i.e., evenly or in bursts). The response variable of the
experiment is the energy consumed by the Android device
in Joules. Each run of the experiment lasts 5 minutes and is
executed on a Nexus 9 Android device. The main result of the
experiment is the statistically significant difference in energy
consumption when receiving small/medium/large numbers of
instant messages for both WhatsApp and Telegram; however,
there is no significant difference when receiving them either
evenly per minute or in bursts.

This study provides evidence that receiving instant messages
can largely reduce the battery life of a user’s Android device,
even when the number of received messages is relatively low
(i.e., 10 messages per minute). Moreover, receiving messages
in bursts does not lead to significant changes in terms of energy
consumption.

As future work, we are planning to carry out the following
activities: (i) to replicate the study targeting a higher number
of subject apps and performing a per-app statistical analysis,
(i1) to conduct an experiment targeting additional open-source
apps (like Signal® and inspecting how they internally man-
age the reception of instant messages (e.g., micro-bundling
messages), and (iii) to investigate how push notifications are
managed at the OS level in Android, how the used mechanisms
can be linked to the results we obtained in this study, and
how such knowledge might help in improving the energy
consumption of Android devices.

Shttps://signal.org
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