
Evolution of Kotlin Apps in terms of Energy
Consumption: An Exploratory Study

Hesham Ahmed
Vrije University

Amsterdam, Netherlands
h.a.m.s.ahmed@student.vu.nl

Alina Boshchenko
Vrije University

Amsterdam, Netherlands
a.boshchenko@student.vu.nl

Niaz Ali Khan
Vrije University

Amsterdam, Netherlands
n.a.khan@student.vu.nl

Dmitriy Knyajev
Vrije University

Amsterdam, Netherlands
d.knyajev@student.vu.nl

Dinara Garifollina
Vrije University

Amsterdam, Netherlands
d.garifollina@student.vu.nl

Gian Luca Scoccia
University of L’Aquila

L’Aquila, Italy
gianluca.scoccia@univaq.it

Matias Martinez
Universitat Politècnica de Catalunya

Barcelona, Spain
matias.martinez@upc.edu

Ivano Malavolta
Vrije University

Amsterdam, Netherlands
i.malavolta@vu.nl

Abstract— Context. Java and Kotlin are the two main pro-
gramming languages used to create Android applications. Kotlin
almost completely replicates the capabilities offered by Java
and offers extra features, making it a popular choice among
developers. From a sustainability perspective, it is crucial to
assess the energy usage of Kotlin-based Android applications.
Goal. The goal of this study is to explore how the energy
consumption of Kotlin applications evolves over time. The study
also aims at identifying the key factors that influence energy
consumption, to inform developers on how the changes they make
affect the energy consumed by their applications.
Method. To investigate how Kotlin apps’ energy consumption
changes through releases, we study three open-source apps Kotlin
apps that are also present in the Google Play store. We conduct
a measurement-based experiment during which we assess the
energy consumed by several releases of each studied application,
for a total of 171 executions. Afterwards, we statistically analyse
the collected data to identify relevant energy fluctuations (i.e.,,
spikes, drops). Finally, we manually inspect the source code
changes in the apps to identify possible causes of the identified
energy fluctuations.
Results. All three studied applications exhibit a growing trend for
energy consumption over the course of their releases. Moreover,
abnormal energy spikes are found for all applications. There are
different causes behind these variations, including OS upgrades,
new features, poorly chosen design patterns and libraries, UI
issues, and unstable app versions.
Conclusions. Our study provides evidence that a number of not
fully understood factors can affect the energy consumption of a
mobile application. Further work is needed to study their impact.

I. INTRODUCTION

Sustainable software development is an approach that has
emerged in recent years to software design and development
that emphasizes energy consumption, energy efficiency, and
environmental sustainability. The goal of sustainable software
development is to minimize the impact of applications and
their infrastructure on the planet [1]. In the context of mobile
applications, power consumption is becoming an increasingly
significant factor that developers consider when designing and
developing mobile applications. Indeed, an application with
a power-hungry nature (i.e., it consumes more energy than it

should) can leave users with a negative impression, which can
lead to negative ratings and uninstalls [2], [3].

Currently, the market for mobile operating systems is led by
the Android operating system from Google, which has more
than 70% of the market as of August 2022 [4]. Historically,
applications that are executed on Android have been written
using Java programming language. However, in 2019, Google
chose Kotlin as the main language for developing Android
apps [5]. Kotlin is an open-source statically typed program-
ming language that targets JVM (Java Virtual Machine),
Android, JavaScript, and native apps [6]. There are several
new programming features introduced with Kotlin that are not
available in Java applications, e.g., extension functions, data
classes, and lambda expressions [7], [8]. Moreover, Kotlin has
a functional approach and its code is generally considered
more readable [9], [10].

The factors mentioned above, among many others, en-
courage developers to migrate their Android applications to
Kotlin [9]. However, while studies have investigated how
developers perform a migration to Kotlin [11], [12] and
how its benefits are perceived [9], [13], [14], the long-term
impact of Kotlin adoption on energy consumption has not been
investigated yet.

We fill this research gap by investigating how the energy
consumption of Kotlin applications evolves over time. To
do so, we first select three high-quality open-source Kotlin
applications employing well-defined inclusion and exclusion
criteria and a quality assessment procedure. Then, we conduct
a measurement-based experiment during which we assess 3
times the energy consumed by 57 combined releases (for a
total of 171 executions), selected from the three applications.
Afterward, we perform a statistical analysis of collected data to
identify energy spikes and drops. Finally, we manually inspect
the source code changes in the apps to identify possible causes
for energy fluctuations.

We found that all the studied applications exhibit a growing
trend for energy consumption over the course of their releases.
Moreover, abnormal energy spikes are found for all appli-

1



cations. Investigating the causes behind such variations, we
found a variety of factors that can affect energy consumption,
including OS upgrades, the introduction of new features,
poorly chosen design patterns and libraries, UI issues, and
unstable app versions. Our study aims to inform developers,
providing them with preliminary evidence on how changes in
their application can affect the energy consumption of their
applications.

II. RELATED WORK

This paper focuses on two main areas: 1) migration from
Java to Kotlin Android applications, and 2) energy consump-
tion of Android applications.

A. Migration from Java to Kotlin in Android

Android developers can choose to write applications entirely
or partially in Kotlin thanks to the interoperability between
Java and Kotlin. Previous work has studied the transition from
Java to Kotlin, with a special focus on Android applications,
and studied the proportion of Java and Kotlin code in various
versions of apps [12], [11], [13], [15]. For example, Mateus
et al. [11] conducted a study on 244 Android applications that
have at least one line of code written in Kotlin. Most Kotlin
applications (59.43%) have at least 80% of their code written
in Kotlin in their most recent version of each application.

Regarding support during migration, Mateus et al. [16]
define a machine learning-based approach to support the mi-
gration of applications from Java to Kotlin-based code features
and metrics. However, that approach does not consider the
energy consumption of the app under migration.

Other works have focused on studying the evolution of
Kotlin applications. For example, Mateus et al. [8] investigated
the adoption and usage of code features provided by Kotlin,
such as Coroutines, in 387 Android applications. The authors
extracted 26 features after exploring the source code of the
applications selected and found out that 15 of them are
used in almost all the applications selected. Among those
features, lambda expression, type interference, and safe calls
are the most used features. Although this study talks about the
evolution of Kotlin programming language features, there was
no specific focus on the energy consumed by the apps and how
the use of those features can impact the energy consumption.

B. Energy consumption of Android applications

Li et al. [17] studied more than 400 apps from the Google
Play store and measured energy at various granularities, from
the level of the entire application to the level of the source
line. One of the trends that they discovered is that across all
different kinds of bytecodes, the data manipulation activities
(such as moving data between registers and loading operands
to registers) utilize the greatest amount of energy. Differently
from our work, their study targets only Android Java-based
applications.

Cruz et al. introduced an automatic tool “Leafactor” that im-
proves the energy consumption of Android applications [18].
It accomplishes this by reworking the source code to adhere to

a set of recognized energy-efficient patterns. 140 open-source
apps with 222 refactorings each were used to validate the tool
set. Pull requests were made to the official projects in order
to contribute changes to the original apps. This paper targeted
applications that were written in Java.

Di Nucci et al. [19] performed the software-based en-
ergy profiling of Android apps. According to the authors,
there are three main categories of tools used to measure
the energy consumption of mobile applications, which are
i) hardware-based, ii) software-based, and iii) model-based.
Besides the advantages of these approaches, however, pose
several limitations. In hardware-based tools, there is an extra
overhead which is the sophisticated and expensive hardware
components, and the goal of the research was to investigate
the accurate energy profiling of software-based models that
can be a substitute for more sophisticated hardware-based
approaches. The software-based tool they proposed, PETrA,
estimates the energy consumed by an app at the method and
performs similarly to a hardware device that measures the
energy consumed. Unlike our work, that work focuses on
measuring the energy of a single version of each application
that composes their evaluation dataset. On the contrary, in this
work, we focus on studying the energy consumed by several
versions of the same application.

Malavolta et al. investigated the impact of the run-time effi-
ciency of the migration to Kotlin for Android applications. To
achieve the research goal, an empirical study was performed
to find out the run-time efficiency impact of migration from
Java to Kotlin. In order to perform the experiment, 7,972
open-source Github repositories were examined and among
them, 451 Kotlin apps were explored. They then selected
10 applications that were migrated from Java to Kotlin in a
single version (i.e., no version shares both Java and Kotlin
code). The study found that the migration to Kotlin resulted
in a significant impact on CPU usage, render duration of
frames, and memory usage. However, migration does not have
significant impacts on the number of calls to the garbage
collector, energy consumption, and app size [20]. In this paper,
we study the energy consumption along the evolution of apps
that are gradually migrated [11], those that are not migrated
in a single commit.

III. STUDY DESIGN

A. Goal and Research Questions

Table I shows the formulation of the goal of this study
according to the Goal-Question-Metric framework [21].

The above-mentioned goal can be read as follows: Analyze
releases of Android apps for the purpose of evaluation with
respect to their energy consumption from the point of view of
software developers in the context of Android mobile apps
with Kotlin being a dominant language (onward - Kotlin
applications).

In order to be considered the dominant language, we estab-
lish that the percentage of Kotlin code in the latest version
of an application has to be greater than 70%. This metric

2



Analyze Releases of Android apps
for the purpose of evaluation
with respect to their energy consumption
from the point of view of software developers
in the context of Android mobile apps with Kotlin

being a dominant language (on-
ward - Kotlin applications)

TABLE I: Goal of this study

Fig. 1: Overview of the experiment

was chosen to create a definition of the "Kotlin application"
and a factor, based on which we select the applications to be
studied. In particular, an app A with an amount of Kotlin code
greater than this percentage is considered as having Kotlin as
a dominant language, thus A qualifies for inclusion in our
dataset. An amount lower than this percentage is not enough
to consider Kotlin a dominant language in A, so the app does
not qualify for inclusion in our dataset.

A visual representation of the experiment we designed
to answer the above-mentioned goal is shown in Figure 1.
Specifically, we identified two main questions:

RQ1: How does the energy consumption of a particular Kotlin
application evolve between releases?

The aim of this question is to investigate the presence
of energy consumption improvements or degradation in new
releases of Kotlin apps and to identify trends in energy
consumption across releases.

RQ2: What are the key factors that influence the energy
consumption of target applications?

With this question, we want to identify which specific
aspects can lead to major changes in energy consumption
along the evolution of an application (i.e., in the sequence
of release versions) and what is the rationale behind them.

The metrics we use in the experiment are the following:

• Energy Consumption (Joules) - characterizes the energy
consumption of the application;

• Execution time (milliseconds) - characterizes the execu-
tion time of the single experiment.

B. Subjects selection

To select a sample of subjects for our experiment that allows
for an investigation into the reasons behind certain fluctuations
in terms of energy consumption in Kotlin-based mobile apps,
we considered a dataset of open-source Android projects by
Pecorelli et al. [22]. The dataset is composed of 1,693 open-
source mobile apps, of which 139 contain Kotlin code. This
dataset is chosen as our starting point because:

• This dataset is a contribution of a recent and large-scale
empirical study in the context of Android applications,
which means that it contains recent applications, increas-
ing the chance of finding applications written in Kotlin,
a programming language recently adopted for Android
programming;

• It includes access to the GitHub repository of each
application, which provides access to the source code and
project history for all applications;

• It contains applications that are available on the Google
Play Store, i.e., real-world applications rather than a demo
or unfinished applications.

To select the experimental subjects from this dataset, we
first define inclusion and exclusion criteria that will allow us
to select the first subset of candidate apps. Then, we apply a
quality assessment procedure that produces the final sample
of apps to be studied.

Table II provides a summary of the apps surviving the
inclusion and exclusion criteria and the quality assessment.
We now explain in detail the rationale behind each inclusion
and exclusion criteria and the checks performed during the
quality assessment.

1) Inclusion and exclusion criteria: We present below the
inclusion and exclusion criteria applied before the quality
assessment was performed, to select the subjects for our study,
as shown in Table II.

• Percentage of Kotlin code ≥ 70%. As previously ex-
plained, our study focuses on applications in which Kotlin
is the dominant language.

• Active development. The application was last updated no
longer than six months before the mining was performed
at the beginning of the experiment.1 These inclusion
criteria ensure that only applications with ongoing active
development are considered.

• Availability of releases. GitHub provides a specific page
to list and describe the project releases. However, its use
is not mandatory and most projects do not explicitly list
releases. In our study, we only consider those applications
for which releases are listed on the specific page, to
ensure the correct identification of releases for each
experimental subject.

1Check of activity on the repositories under study on September 15, 2022.

3



Criteria No of Apps

Initial dataset 139
After inclusion and exclusion criteria 10
After quality assessment 3

TABLE II: Inclusion and exclusion criteria for subjects selec-
tion

• Availability of APKs. We include only applications for
which APK files are available on the releases page of the
GitHub repository. Having those APKs is necessary for
us to measure the energy consumed by the app during
execution. Moreover, by retrieving pre-built APKs for
each release, we avoid the need of building specific app
versions, which may be unsuccessful due to, for instance,
the existence of deprecated or missing dependencies.

• Presence of test cases. Availability of test cases is nec-
essary to automatically run and exercise the application,
and to measure the energy consumed by the app.

• Removal of toy applications. We discard applications that
are not published on the Google Play store, to ensure that
only real-world applications are included in the study.

2) Quality assessment: After applying inclusion and exclu-
sion criteria, ten apps survived and represent potential subjects
for our study. These applications have been further scrutinized
during a quality assessment process. The quality assessment
has been performed by the authors, and the artifacts related to
the quality assessment are available in our replication package.

During the quality assessment, we mainly analyzed two
metrics, to select apps of higher quality. As a first metric,
we considered the number of stars in the application GitHub
repository, which is a way for users to manifest interest or
satisfaction for a repository [23]. As a second metric, we
considered test coverage as having a higher test coverage is
a sign that the application could be well tested and hence
of higher quality. We selected those apps with test coverage
greater than 70%. Moreover, we executed the latest version of
the applications on our experimental environment (described
in Section III-D) to verify their proper operation, in order to
know if those are usable for our experiment. Finally, as output
for the quality assessment, we select the top three apps with
the highest number of stars, test coverage, and that worked on
the execution environment as subjects for our experiment.

Table III shows the three apps selected for the experiment
(Uhabits, Anki-Android, and WiFi Analyzer), their Google
Play and GitHub identifiers, the test coverage and GitHub
stars count for each of them. These apps have been chosen
after applying the inclusion/exclusion criteria and the quality
assessment procedure. All the chosen apps contain a significant
proportion of Kotlin code, have high test coverage, are updated
regularly, and provide releases on GitHub complete with
APKs.

From these applications, we selected releases with the most
profound changes, leading to a final number of 57 releases
considered in our experiment (11 for WiFi Analyzer, 15

for UHabit, and 31 for Anki-Android). This selection was
performed manually by the authors, by surveying the notes
of each release with prominent changes. This reduction to
fifty-seven releases across the three experimental subjects is
necessary, as our experiment necessitates the execution of all
releases of included applications. Assuming an average of
20 releases for each of the 10 applications that respect the
inclusion and exclusion criteria, assuming three measurement
trials for each release, and assuming that the execution of each
trial requires 180 seconds, a total of 20× 10× 180× 3 ≈ 30
hours of execution time would be required, which is unfeasible
given the available resources.

C. Experimental variables

To answer the research questions defined in Section III we
consider the release versions of the target applications as our
independent variable. By target applications, we assume the
sample applications from the set selected in Section III-B.
As a dependent variable, we select the energy consumption
(expressed in Joules) per test set run of the corresponding
release. As there are 3 applications to be studied, therefore,
each of them has separate independent and dependent vari-
ables, releases set, and tests set.

D. Experiment design and execution

We conduct a measurement-based experiment during which
each application release is executed and exercised, and its
energy consumption is recorded. For this purpose, we au-
tomate the execution of the experiment for each subject by
employing an ad-hoc script that automatically clicks through
the application and covers its main features with the necessary
waiting operations in between steps. Each script is designed
to execute one user scenario for each of the main features
that the app contains (e.g., creating a new card in Anki-
Android). These scripts were created by manually exercising
each app on the test device while recording the performed
operations. When executed, the scripts replay the recorded
operations and hence reproduce the same behavior in the
test subject. Our created test scripts that interact with the
subject application are run using MonkeyRunner2, a utility for
automated testing of Android apps. While running the scripts,
the energy consumption is measured in parallel. The scripts
are available in the online replication package.

Measurements for energy usage might be affected by fluc-
tuations; hence we cannot draw reliable conclusions based
on a single experiment run. To mitigate unreliable measures,
the experiment is repeated three times for each app release,
averaging the results. The three selected apps combined have
57 releases in total and running the test execution associated
with each selected release 3 times result in 171 test trials.
Assuming that each test will take 120 seconds on average and
an idle time of 60 seconds between each run, this results in
171 x 180 = 9 hours of sheer execution time.

Before running the experiment, we manually prepare our
device by fully charging the battery, removing the SIM and

2https://developer.android.com/studio/test/monkeyrunner

4



App Name Google Play ID GitHub Repo Stars # Kotlin % Releases #

Uhabits org.isoron.uhabits https://github.com/iSoron/uhabits/ 5,221 83% 39
Anki-Android com.ichi2.anki https://github.com/ankidroid/Anki-Android.git 2,087 98% 1,024
WiFi Analyzer com.vrem.wifianalyzer https://github.com/VREMSoftwareDevelopment/WifiAnalyzer.git 1,804 97% 25

TABLE III: Inclusion and Exclusion Criteria for Study Selection

SD card, setting the brightness and sound to a minimum,
enabling the stay awake developer option, and finally, disabling
network data, Bluetooth, and notifications of other apps. As per
Cruz [24], an idle time of 60 seconds is observed between each
iteration to prevent tail energy consumption from affecting
our measures. Furthermore, the cache will be cleared between
every two runs. After executing all three experiment runs
for a release, another one is downloaded and installed in
its place. The sequence of execution of the releases will be
randomized to mitigate the need to have an uncontrolled factor
affecting a specific set of test subjects. The scripts and the
code to collect the measurements and to perform the setup
and reset phases are implemented using Android Runner, an
open-source Python framework for automating experiments on
Android devices [25].

To obtain accurate measurements, we run all experiment
runs using the same hardware and software. The test subjects
are executed on a Nokia 6.2 smartphone, running Android
10 and equipped with a Qualcomm SDM636 processor and
4GB RAM. Android Runner is executed on Raspberry Pi 3
equipped with an ARM Cortex-A53 processor and 1 GB RAM
and running Debian 11. Two personal computers are used to
connect to the Raspberry PI via SSH connection: an Intel Core
i7-10750H and an Intel Core i5-10300H, with 16GB and 8
GB of RAM, respectively. The Android device is connected
to one of the Raspberry PI USB ports with a USB to USB-C
cable and has USB debugging enabled, in order to be able to
execute tests with the Android Runner. To reduce the potential
impact on the results of the experiment, USB charging is
programmatically disabled on the Android device using the
developer tools.

E. Data analysis
1) Plotting the energy consumption per application: We

assume that we have applications Ak, where k = 1..K,K = 3.
To answer RQ1 we first look at how for each Ak the level of
energy consumption changes between release Ri and releases
Ri+1 assuming that the total number of applications releases
Ak is Nk, N > 1. For each app Ak, we present the collected
data in the form of a plot where the X axis is the releases
of Ak, and the Y axis is the energy consumed during the
experiment. The plot shows the levels of energy consumption
of R1k..RNk and allows one to notice trends and anomalies in
energy consumption. As we execute each release three times,
we consider the mean value of consumption across all runs
for that release.

The plots also show a smoothing line, which is fitted
to the data and used to help explore the relationships be-
tween releases and energy consumption. The smoothing line

is computed using LOESS (Locally Weighted Scatterplot
Smoothing), a nonparametric method for smoothing a series
of data in which no assumptions are made about its underlying
structure [26].

2) Recognizing Spikes and Drops in the energy consump-
tion: Based on the plot we can notice a trend in the releases
time series data and visually recognize the spikes and drops.
However, to formally prove the observed behavior, we need to
define a criterion of the spikes/drops definition. As a criterion,
we decided to pick the following: we consider a spike or drop
for every pair of releases Rn-Rn+1 in which the difference
between the energy consumption is higher than the double
standard deviation (2 ∗ SD) of the entire series of releases
of the corresponding application Ak. The reason for choosing
double standard deviation instead of just the standard deviation
is because the former allows us to identify larger energy
fluctuation than using the latter, and thus to exclusively focus
on highly significant spikes or drops that reflect anomaly
behavior in energy consumption.

3) Studying Spikes and Drops in the energy consumption:
To answer RQ2, once we identify one spike or drop, we search
for the release on which the trend (spike or drop) starts and
that on which it ends. Then, to determine the root cause of the
drop or spike in energy consumption, we focus on the releases
associated with each spike and drops previously detected.
To find the potential reasons behind the energy consumption
anomaly represented by a selected spike or drop, we manually
check the source code of a release Ri of a target app An that
has a spike or drop, the release notes related from Ri, and all
the commits (which introduce code changes) that were made
between Ri and the previous release. Additionally, during this
step, we debug these pair release versions for overlapping
layouts and views using the Debug GPU Overdraw tool3, to
detect energy spikes due to user interface rendering issues.
Based on our findings concerning all the applications A1..AK

we will present a summary of the most likely reasons for the
candidates and related discussions.

F. Study Replicability

For more details about the research such as the research
methods, data used for research, and code scripts, the reader
can consider the replication package of this study4. This
replication package is made available to the researchers and
practitioners to support independent verification and replica-
tion of the study.

3https://developer.android.com/topic/performance/rendering/inspect-gpu-
rendering

4https://github.com/S2-group/ict4s-2023-evolution-kotlin-apps-energy-rep-pkg

5



Fig. 2: Energy consumed by WiFi Analyzer across its re-
leases, expressed in Joules (Red line = raw energy consump-
tion; Blue line = LOESS smoothed consumption; Grey area
= confidence interval 0.95).

IV. RESULTS

In the following, we describe the results of our experiment,
organized by research question.

A. How does the energy consumption of a particular Kotlin
application evolve between releases?

In order to detect spikes and drops in energy consumption
of the three apps under study, we first calculated the double
standard deviation (in Joules) for each application and obtained
the following results:

2 ∗ SD(WiFiAnalyzer) = 5.8622,

2 ∗ SD(Uhabit) = 1.635868,

2 ∗ SD(Ankidroid) = 4.853248.

Then, for each application, we visualize these values in
a plot, together with (i) the raw energy consumed by each
release (represented by a red line), (ii) a smoothing line using
a LOESS method (represented by a blue line), and (iii) the
confidence interval around the smooth line represented by the
dark grey area.

The resulting plots are presented in Figures 2, 3, and 4,
which show the energy consumption throughout the release of
WiFi Analyzer, Uhabits, and Anki-Android apps, respec-
tively.

We now discuss in detail what can be observed from
the plots. Regarding the WiFi Analyzer app (whose energy
consumption is shown in Figure 2) it can be noticed that
the energy consumption is following the upward trend, with
almost all values within the confidence interval area. The
only significant spike in energy consumption is the spike
between releases 3.0.6 and 3.0.7. Therefore, this spike will
be considered in further investigation.

The energy consumption of the Uhabits app is displayed
in Figure 3. It can be noticed that the energy consumption
does not follow a visible upward or downward trend, but

instead has a fluctuation across releases. Almost all the energy
consumption values are within the confidence interval area,
with two exceptions: a spike in energy consumption between
releases 1.8.9 and 2.0.0, and a drop between releases 2.0.0
and 2.0.1. Therefore, these two anomalies will be considered
in further investigation in Section IV-B. Interestingly, this latter
drop comes in the release immediately after the former spike,
so considering this in the qualitative investigation we aim to
understand more in detail the root causes behind the spike and
how this was addressed in the subsequent release.

The energy consumption of Anki-Android can be observed
in Figure 4. It can be observed that the energy consumption is
following a slight upward trend, with a lower number of values
within the confidence interval area compared to the other two
applications. Based on the mean values of energy consump-
tion, in the series of releases, there is a valid spike between
releases 2.16.25 and 2.16.34, followed by a drop in energy
consumption between 2.16.37 and 2.16.43. The spike/drop is
considered valid when the difference between two consecutive
releases is more than double the standard deviation, according
to the metric described above. We calculated this difference
for each spike/drop, and other spikes/drops which are visible
on the plot did not match these criteria.

Therefore, these anomalies will be considered in further
investigation.

B. What are the key factors that influence the energy con-
sumption of target applications?

1) WiFi Analyzer: There is an increase in the energy con-
sumption of WiFi Analyzer from v3.0.6 to v3.0.7. Between
these versions, there were 14 commits and the number of lines
of code decreased slightly from 4,592 to 4,586, as can be
observed in Figure 5. However, we did not find any major
change between these two revisions, such as the introduction
of a new feature or a migration from one language to another.
The mentioned commits introduced minor changes, such as

Fig. 3: Energy consumed by Uhabits across its releases,
expressed in Joules. (Red line = raw energy consumption;
Blue line = LOESS smoothed consumption; Grey area =
confidence interval 0.95).

6



Fig. 4: Energy consumed by Anki-Android across its releases, expressed in Joules. (Red line = raw energy consumption;
Blue line = LOESS smoothed consumption; Grey area = confidence interval 0.95).

bug fixes. Thus, we hypothesize that a possible reason for this
spike might be the addition of support for Android 12 [27].
Indeed, this is consistent with observations from a study of
Pathak et al. [28], who studied bug reports and developer
discussions, and found that about 20% of energy-related
defects appeared in Android apps after the introduction of an
OS upgrade.

Fig. 5: Lines of code of WiFi Analyzer

We also studied the impact of energy consumption on other
major changes that occurred along the WiFi Analyzer life-
cycle. First, we focus on the migration from Java to Kotlin.
WiFi Analyzer’s code base migrated fully from Java to Kotlin
in one release (3.0.1), which occurred before the release with
an energy spike (3.0.7). The release prior to the migration,
i.e., 2.1.2, has 149 Java files and 5,848 lines of code, and
the revision after the migration, 3.0.1, has 130 Kotlin files
with 3,294 lines of code. The reduction in the number of lines
of Kotlin code with respect to Java code is one of the main
motivations to perform migrations [9], as it may improve the
maintainability of the application. The application under study
is an example of this statement: the migration reduced the
total amount of code by more than 40%. Even though the
code almost halved, it did not affect the energy trends, which
stayed almost constant at about 77 Joules before and after the
migration.

Secondly, after inspecting the release notes, we observed the

adoption of the DataBinding library5, which allows the inte-
gration of UI components to data sources using a declarative
format rather than programmatically. WiFi Analyzer started
to use DataBinding from version 2.1.2 to bind UI elements
to data. This is considered an antipattern (argumented by, for
instance, [29], [30]) as business logic is written in the UI, i.e.,
directly into the XML files of the definition of UI layouts.
This practice impacts code readability, thus adding complexity
to code refactoring and maintainability [31]. DataBinding
is supposed to improve app performance because binding
occurs during compilation time by generating binding classes
in advance [32]. However, Figure 3 does not show any
substantial difference in energy consumption between revision
2.0.4 and revision 2.1.2, i.e., the version before and after the
DataBinding introduction.

2) Uhabits: Uhabits conducted its migration from Java to
Kotlin gradually: it took 13 releases from version 1.8.7 (fully
written in Java) to version 2.0.1 (fully written in Kotlin). The
releases between them mix Java and Kotlin code. We recall
that this migration is different from that one done in the WiFi
Analyzer, which was fully migrated from one release to the
next one (this is called ‘one-step migration’ [11]). A sharp
rise in energy consumption can be observed in Figure 3,
in release 2.0.0. Partially, this spike can be explained by
the unstable nature of release 2.0.0, as it was an alpha pre-
release. Moreover, one of the new functionalities introduced
in this version (e.g., “synchronization across devices”) was
labeled as buggy and removed in version 2.0.1. The same
functionality was later fixed and reintroduced in version 2.1.
Energy consumption also decreased by about 2 Joules in
release 2.0.1. Another potential reason for this energy spike
is the introduction of six new features in version 2.0.0, which
introduced complexity in the application code: synchronization
across devices, tracking of numerical habits, adding notes
to habits, skipping days without breaking streak, showing
question marks for missing data, and delaying start of a new
day until 3 am.

Moreover, we found that version 2.0.1 introduced code

5https://developer.android.com/topic/libraries/data-binding

7



refactors. In particular, developers started using question marks
and assertion operators to avoid Null Pointer Exception
(NPE) errors. Failure to prevent NPE errors may result in no-
sleep energy bugs [33]. In addition to null safety checks, other
new Kotlin features were introduced, such as extension func-
tions in utilities for Activities, Fragments, Dialogs, Views
and other primitive data types, wrapper classes as well as
scope functions such as apply(), let(), run(), with() which
considerably reduced all the boilerplate code and increased
readability.

During the GPU overdraw inspection of Uhabits, we an-
alyzed all versions with significant spikes mentioned above.
As a result, we found issues in several UI elements: the habit
widget, the toolbar on the app’s main page, and almost all ele-
ments on the about page. An example can be seen in Figure 7
a) where the red color identifies elements that were overdrawn
4 or more times [34]. Following this inspection, the code was
analyzed to double-check the presence of UI issues. Indeed,
the XML layouts have a complex view hierarchy as well as
unneeded background layouts. For instance, in the About
Page (presented in Figure 7 a)), a grouping of displayed
elements was achieved using multiple TextViews inside a
ScrollView. The same effect could have been achieved using a
singular LinearLayout and setting the margins accordingly. In
addition, the list that displays the developers of the application
located at the bottom of the page was created using 194
TextView elements. A more efficient solution to display lists
is to use RecyclerView [35]. All of that has an impact on
energy consumption.

Uhabits in version 2.0.0 switched from AsyncTask threads
to Kotlin coroutines for its asynchronous code. Kotlin corou-
tines are a lightweight concurrency design pattern [36]. In a
study of Saoungoumi-Sourpele et al. [37], Kotlin coroutines
were found to be more CPU- and memory-efficient when com-
pared to conventional AsyncTask threads. However, Uhabits
exhibits an energy spike where it adopted coroutines, hinting
that adoption of coroutines might not always be beneficial with
respect to energy consumption.

3) Anki-Android: Anki-Android is still in its migration
process from Java to Kotlin and has not released any stable
version so far. To this date, there are 89 alpha releases of
the 2.16 version. The distribution of lines of code for Anki-

Fig. 6: Lines of code of Uhabits

a) Uhabits b) Anki-Android

Fig. 7: GPU overdraw debugging of two apps (Blue area =
no overdraw; Green area = overdrawn more than two times;
Red area = overdrawn four or more times)

Android is visible in Figure 8. Before the beginning of the
migration, version 2.15.6 had 64,446 lines of pure Java code,
and the latest 2.16.89 version was fully rewritten in Kotlin
with 71,887 lines of Kotlin code. Indeed, even if the lines
of code have slightly increased, this does not contrast with
the intuition that Kotlin helps in reducing the code size, since
a large number of new features have been added throughout
these releases, covering a period of more than a year.

Fig. 8: Lines of code of Anki-Android

The graph shows a significant decrease of 3 Joules in energy
consumption in version 2.2.2 which could be explained by a
large number of fixes and improvements made in this version,
such as: improving the speed of showing cards, removing ani-
mation as it was buggy, simplifying menus and setting, making
volume duck on any background music, fixing whiteboard
feature, removing duplication and many more. Afterward, this
downward trend was followed by a sharp increase of 7 Joules

8



between versions 2.2.2 and 2.5.1. The reason behind such a
spike could be full support for APKG export and import which
was added in version 2.3 and was reported as an issue later
due to its slow performance [38] as well as support Android
6 Marshmallow support [39].

Moreover, between versions 2.6.0 and 2.8.1, there was a
noticeable rise of 3 Joules due to new features added, namely
sending apkg to arbitrary app (e.g., Google Drive), displaying
AnkiWeb, and new widgets. A similar spike was noted be-
tween these releases 2.9.1 and 2.9.4 which could be explained
with support for new AnkiWeb encryption changes and various
patches for Anki Desktop added. Versions 2.9.4 to 2.10.2
showed a dramatic drop in energy use, which was maintained
at the same level as it was in the previous 2.5.1 version
or five years earlier. It is explained by useful light-weight
new alternative tools such as addition of CSS style capability
to heavy checkmark and down arrow in a card, support for
card Javascript to reload current card programmatically, as
well as over 50 minor to serious fixes (e.g. crashes during
card rendering, auto-sync, audio recording, high-frequency
Webview, multimedia, etc.) and around 10 improvements such
as improving performance, v2 scheduler compatibility with
Anki ecosystem, handling or detection of full sync, user
messaging on network connection failures and many more.
Regarding spikes and drops in version 2.16 could be explained
by the unstable nature of the version, which has only 89 alpha
releases to this date.

From GPU overdraw debugging Anki-Android (Figure 7
b)), we noticed that from version 2.10 the Hamburger Menu
page has been red-colored, which means that this view was
overdrawn four or more times for this version. This issue was
less impactful in previous versions from Anki-Android, in
which a lower number of overdraws were found [34].

V. DISCUSSION

In this section, we elaborate on our findings and on their
implications, grouped by research questions.

A. RQ1: How does the energy consumption of a particular
Kotlin application evolve between releases?

In our work, we analyze the energy consumption across
releases of three Kotlin applications. To determine significant
fluctuations in energy consumption of the analyzed applica-
tions, we adopted a margin of error equal to two times the
standard deviation, and in all the applications, we detected
anomalies that exceed this threshold. During our analysis,
we found at least one upward trend in energy consumption
for all three applications considered. These spikes are usually
followed by minor fluctuations (such as in the case of Anki-
Android and WiFi Analyzer) and more significant ones (such
as in the case of Uhabits).

These results show the need to increase the testing effort
before doing a release, by carrying out more exhaustive func-
tional and non-functional tests, which include, for example,
the measurement and assertion of the energy consumption of
the changes introduced by a release. As we have seen, for

instance, in Uhabits, an energy bug can be introduced in a
new version of the application. This finding calls for further
research on the detection of energy bugs.

B. RQ2: What are the key factors that influence the energy
consumption of the target applications?

We conducted a manual investigation into the root causes
behind the detected energy spikes and drops, analyzing the
applications’ source code, their release notes, and the presence
of UI issues. As a result, we highlight the following factors
which, according to our investigation, have a direct impact on
the appearance of spikes or drops in energy consumption.

In the WiFi Analyzer application, we found that a possible
reason for a spike might be the addition of support for Android
12, which was released in October 2021. This finding is a
call for further research on the impact of adding support to
the most recent Android releases, and how this impact can
be minimized. Consider that every Android application will
eventually need to support newer versions of Android.

At the same time, despite WiFi Analyzer’s code base
migrated fully from Java to Kotlin in one release and even
though the size of the app almost halved in terms of lines of
code, it did not affect the energy trends. This finding could
mean that the code features used before and after migration
(from Java and Kotlin, respectively) consume a similar amount
of energy for carrying out the same tasks. That could be
explained as the fact that developers, even after migrating from
Java to Kotlin, continue to program in Kotlin as they used to do
using Java, that is, for instance, using the same or similar code
features and not adopting the new ones introduced by Kotlin
(listed in [11]). Consequently, as the code in Java and Kotlin
may look similar, the bytecode could also be (we recall that
both Java and Kotlin are compiled to JVM bytecode). For this
reason, we do not observe variations in energy consumption
before and after migration. Future research shall be conducted
to determine the impact on the energy consumption of each
Kotlin feature.

In the Uhabits application, we observed a significant spike
followed by a significant drop. This could be explained by the
unstable nature of the alpha pre-release with a synchronization
bug, which was removed in the next release to be fixed in
version 2.1. This shows that the introduction of new appli-
cation features and the adoption of new language features or
new third-party libraries should be thoroughly tested in order
to check if they introduce a regression (energy or functional)
bug. This finding calls for further research on the detection of
energy bugs.

VI. THREATS TO VALIDITY

In the following, we describe the threats to the validity
of our study. We discuss the threats by making use of the
classification by Cook and Campbell [40].
Internal Validity. Internal validity refers to the causality
relationship between treatment and outcome [41]. In our exper-
iment, maturation might play a role when our test scenarios are
run multiple times. We mitigate this potential threat through

9



our extensive setup and reset phase, by performing a two-
minute waiting operation between runs, and by executing
different releases in random order. Another possible threat to
validity is represented by the various potential interference that
can occur on a real device and potentially affect the resulting
outcomes. We mitigate these by taking all the steps listed
in Section III-D, to ensure that such inferences are limited
as much as possible. However, during testing of the Anki-
Android application versions 2.16.34 and 2.16.37 excessive
heating of the phone was detected, which could have affected
the results. Moreover, we used fixed devices and application
parameters throughout the entire experiment cycle, since there
is a risk of obtaining invalid data when employing different
instruments, environments, and devices during the test.
External Validity. External validity deals with the gener-
alizability of obtained results [41]. Our study relies on the
availability of the full source code and development history
of an application, so we limited the selection of our subjects
to open-source applications. Hence, there is the risk that
obtained results might not generalize to all Kotlin applications,
including non-open source ones. We mitigated this risk by
selecting applications from a dataset that only includes open-
source apps published in the Google Play store and by defining
a set of clear inclusion and exclusion criteria that allowed us
to select applications more likely to be representative of real-
world Kotlin applications. Moreover, per performed a quality
assessment of candidate applications that ensures that apps
used in our study adhere to a minimum standard of quality
and complexity.

Due to time constraints, we restricted our experiment to
three applications and fifty-seven releases, due to the manual
work necessary for implementing the test scenarios and the
required execution time needed to exercise each application.
This potentially impacts the generalizability of our results to
other apps. We mitigated this threat by conducting a quali-
tative analysis of releases for which an energy anomaly was
identified. During this analysis, we identified and discussed
several root causes that are likely to be found in other Kotlin
and Android applications.
Construct Validity. Construct validity deals with the relation
between theory and observation [41]. We mitigated potential
construct validity threats by defining all details related to
the design of our study (e.g., the goal, research questions,
and tools) before starting its execution. However, as we used
one energy profiler (batterystats) to collect the energy mea-
surements, our experiment suffers from mono-method bias.
To limit the potential impact of this threat, we repeated the
experiment three times for each tested release and considered
the mean value across all three measurements.

In addition, to ensure that interactions with the applications
during the experiments are representative of real-world usage,
we constructed usage scenarios that exercise the main func-
tionalities of tested applications. These main functionalities
were identified prior to beginning the experimentation, by
manually inspecting the applications. To obtain reliable data
from different releases the main functionalities were tested

in all versions of the same application. After conducting the
experiment, the experiment logs were analyzed for anomalies,
to build confidence in the correct execution of the experiment.
Conclusion Validity. Conclusion validity deals with issues
that affect the ability to draw the correct conclusions from
the outcome of an experiment [41]. A potential threat to the
validity of our conclusions comes from the limited sample size
used in our experiment, due to the considerable manual effort
required to design scenarios and execute the experiment. To
mitigate this threat we used a conservative double standard
deviation margin of error in our statistical analysis, to limit
the risk of false positives in the identified energy spikes or
drops. Moreover, we complemented our statistical analysis
with a qualitative investigation of releases for which energy
anomalies were identified. For all the manually analyzed
releases, we identified antipatterns or technical reasons that
are likely to be the root causes behind the identified energy
anomaly. Finally, we provide a publicly available replication
package to independently verify our findings.

VII. CONCLUSIONS

We conducted a study to evaluate energy consumption
during the evolution of Kotlin mobile apps. An experiment has
been conducted by choosing three apps from a predetermined
dataset and analyzing their energy consumption across all
app releases. From the results obtained, we can conclude
that energy consumption is generally following an upward
trend, and in all the applications we detected significant energy
spikes and drops. Among the major factors that impacted those
fluctuations, we can underline OS upgrades, the release of new
features, poorly chosen design patterns and libraries, UI issues,
and unstable app versions.

We highlight the following possible directions for future
research on Kotlin-based Android applications:

• Design, development, and evaluation of new approaches
for detecting energy (regression) bugs in Android apps;

• Conduct further experiments on the impact of supporting
more recent Android releases on the energy consumption
of Android apps;

• Conduct further experiments on the impact of the usage
of Kotlin-specific features on the energy consumption of
Android apps;

• Extending the dataset with more application and repeating
the experiment on a wider suite of test devices to build
confidence in our results;

• Further in-depth source code investigations, in order to
find out more about the underlying reasons behind energy
consumption fluctuations.

ACKNOWLEDGEMENT

This paper has been funded by the “Ramon y Cajal”
Fellowship (RYC2021-031523-I) and the GAISSA
Spanish research project (ref. TED2021-130923B-I00;
MCIN/AEI/10.13039/501100011033).

10



REFERENCES

[1] R. Verdecchia, P. Lago, C. Ebert, and C. De Vries, “Green it and green
software,” IEEE Software, vol. 38, no. 6, pp. 7–15, Nov. 2021, publisher
Copyright: c© 1984-2012 IEEE.

[2] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting per-
formance bugs for smartphone applications,” in Proceedings of the 36th
international conference on software engineering, 2014, pp. 1013–1024.

[3] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about?” IEEE software, vol. 32, no. 3, pp. 70–77,
2014.

[4] “Mobile Operating System Market Share Worldwide | Statcounter
Global Stats,” Feb. 2023, [Online; accessed 16. Feb. 2023]. [Online].
Available: https://gs.statcounter.com/os-market-share/mobile/worldwide

[5] “Android’s Kotlin-first approach,” Aug. 2022, [Online; accessed 16. Feb.
2023]. [Online]. Available: https://developer.android.com/kotlin/first

[6] “FAQ | Kotlin,” Feb. 2023, [Online; accessed 16. Feb. 2023]. [Online].
Available: https://kotlinlang.org/docs/faq.html

[7] Y. T. Daniela Gotseva and P. Danov, “Comparative study java vs kotlin,”
in Proc. 27-th National Conference with International Participation
"TELECOM 2019", 2019.

[8] B. G. Mateus and M. Martinez, “On the adoption, usage and evolution
of kotlin features in android development,” New York, NY, USA, 2020.
[Online]. Available: https://doi.org/10.1145/3382494.3410676

[9] M. Martinez and B. Gois Mateus, “Why did developers migrate android
applications from java to kotlin?” IEEE Transactions on Software
Engineering, vol. 48, no. 11, pp. 4521–4534, 2022.

[10] ONLINE, “Conversational Kotlin: A Look at the Benefits of Readable
Code ,” 2022, https://gs.statcounter.com/os-market-share.

[11] B. Góis Mateus and M. Martinez, “An empirical study on quality of
android applications written in kotlin language,” Empirical Software
Engineering, vol. 24, no. 6, pp. 3356–3393, 2019. [Online]. Available:
https://doi.org/10.1007/s10664-019-09727-4

[12] M. Peters, G. L. Scoccia, and I. Malavolta, “How does migrating to
kotlin impact the run-time efficiency of android apps?” in 2021 IEEE
21st International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2021, pp. 36–46.

[13] R. Coppola, L. Ardito, and M. Torchiano, “Characterizing the transition
to kotlin of android apps: A study on f-droid, play store, and github,”
in Proceedings of the 3rd ACM SIGSOFT International Workshop
on App Market Analytics, ser. WAMA 2019. New York, NY,
USA: Association for Computing Machinery, 2019, p. 8–14. [Online].
Available: https://doi.org/10.1145/3340496.3342759

[14] V. Oliveira, L. Teixeira, and F. Ebert, “On the adoption of kotlin on
android development: A triangulation study,” in 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2020, pp. 206–216.

[15] M. Kim, Y. Kim, H. Jeong, J. Heo, S. Kim, H. Chung, and E. Lee,
“An empirical study of deep transfer learning-based program repair
for kotlin projects,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1441–1452. [Online].
Available: https://doi.org/10.1145/3540250.3558967

[16] B. G. Mateus, M. Martinez, and C. Kolski, “Learning migration
models for supporting incremental language migrations of software
applications,” Information and Software Technology, vol. 153, p.
107082, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584922001914

[17] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study
of the energy consumption of android applications,” in 2014 IEEE
International Conference on Software Maintenance and Evolution, 2014,
pp. 121–130.

[18] L. Cruz, R. Abreu, and J.-N. Rouvignac, “Leafactor: Improving energy
efficiency of android apps via automatic refactoring,” p. 205–206, 2017.
[Online]. Available: https://doi.org/10.1109/MOBILESoft.2017.21

[19] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” pp. 103–114, 2017.

[21] R. Solingen, V. Basili, G. Caldiera, and D. Rombach, Goal Question
Metric (GQM) Approach, 01 2002.

[20] M. Peters, G. L. Scoccia, and I. Malavolta, “How does migrating to
kotlin impact the run-time efficiency of android apps?” pp. 36–46, 2021.

[22] F. Pecorelli, G. Catolino, F. Ferrucci, A. De Lucia, and F. Palomba,
“Software testing and android applications: A large-scale empirical
study,” Empirical Softw. Engg., vol. 27, no. 2, mar 2022. [Online].
Available: https://doi.org/10.1007/s10664-021-10059-5

[23] H. Borges and M. T. Valente, “What’s in a github star? understanding
repository starring practices in a social coding platform,” Journal of
Systems and Software, vol. 146, pp. 112–129, 2018.

[24] L. Cruz, “Green software engineering done right: a scientific guide to
set up energy efficiency experiments,” http://luiscruz.github.io/2021/10/
10/scientific-guide.html, 2021, blog post.

[25] I. Malavolta, E. M. Grua, C.-Y. Lam, R. de Vries, F. Tan, E. Zielinski,
M. Peters, and L. Kaandorp, “A framework for the automatic
execution of measurement-based experiments on android devices,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’20. New York, NY,
USA: Association for Computing Machinery, 2021, p. 61–66. [Online].
Available: https://doi.org/10.1145/3417113.3422184

[26] E. H. Frank, “Regression modeling strategies with applications to linear
models, logistic and ordinal regression, and survival analysis,” 2015.

[27] ReactiveCircus, “android-emulator-runner,” Feb. 2023, [Online; accessed
16. Feb. 2023]. [Online]. Available: https://github.com/ReactiveCircus/
android-emulator-runner/issues/222

[28] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
2011, pp. 1–6.

[29] Q. Gil, “Antipattern: Ui databinding android,” 2019,
https://quinngil.com/2019/02/05/antipattern-ui-databinding-android/.

[30] T. Mutton, “An argument against data binding,” 2017,
https://medium.com/@hellotimmutton/an-argument-against-data-
binding-13e2aaf7a9b1.

[31] Q. Gil, “Antipattern: UI Databinding Android ,” 2019,
https://quinngil.com/2019/02/05/antipattern-ui-databinding-android/.

[32] P. Aideloje, “Using data binding to prevent slow rendering in Kotlin
- LogRocket Blog,” LogRocket Blog, Jul. 2022. [Online]. Available:
https://blog.logrocket.com/data-binding-prevent-slow-rendering-kotlin

[33] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake? characterizing and detecting no-sleep energy bugs in
smartphone apps,” in Proceedings of the 10th international conference
on Mobile systems, applications, and services, 2012, pp. 267–280.

[34] “Inspect GPU rendering speed and overdraw,” May 2022, [Online;
accessed 16. Feb. 2023]. [Online]. Available: https://developer.android.
com/topic/performance/rendering/inspect-gpu-rendering

[35] “RecyclerView | Android Developers,” Jan. 2023, [Online; accessed
16. Feb. 2023]. [Online]. Available: https://developer.android.com/
reference/androidx/recyclerview/widget/RecyclerView

[36] “Kotlin coroutines on Android,” Sep. 2022, [Online; accessed 16.
Feb. 2023]. [Online]. Available: https://developer.android.com/kotlin/
coroutines

[37] R. Saoungoumi-Sourpele, J. M. Nlong, J.-R. K. Kamdjoug, and G. V.
Yufui, “Improve image decoding in lightweight environment using a
coroutines based approach,” Journal of Computer and Communications,
vol. 8, no. 10, pp. 60–74, 2020.

[38] ankidroid, “Deleting decks and importing cards from apkg is too slow,”
Feb. 2023, [Online; accessed 17. Feb. 2023]. [Online]. Available:
https://github.com/ankidroid/Anki-Android/issues/2547

[39] ONLINE, “After marshmallow update l, Nexus 5 has become very
slow ,” 2015, https://forums.androidcentral.com/legacy-android-other-
oss/596561-after-marshmallow-update-l-nexus-5-has-become-very-
slow.html.

[40] T. Cook and D. Campbell, Quasi-Experimentation: Design and Analysis
Issues for Field Settings. Houghton Mifflin, 1979.

[41] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

11


