
A Quantitative and Qualitative Investigation of
Performance-Related Commits in Android Apps

Teerath Das∗, Massimiliano Di Penta†, Ivano Malavolta‡
∗Gran Sasso Science Institute, L’Aquila, Italy - teerath.das@gssi.infn.it

†University of Sannio, Benevento, Italy - dipenta@unisannio.it
‡Vrije Universiteit Amsterdam, The Netherlands - i.malavolta@vu.nl

Abstract—Performance is nowadays becoming a crucial issue
for mobile apps, as they are often implementing computational-
intensive features, are being used for mission-critical tasks, and,
last but not least, a pleasant user experience often is a key
factor to determine the success of an app. This paper reports
a study aimed at preliminarily investigating to what extent
developers take care of performance issues in their commits,
and explicitly document that. The study has been conducted on
commits of 2,443 open source Android apps, of which 180 turned
out to contain a total of 457 documented performance problems.
We classified performance-related commits using a card sort-
ing approach, and found that the most predominant kinds of
performance-related changes include GUI-related changes, fixing
code smells, network-related code, and memory management.

Index Terms—Android, Mobile Performance issues, App Store
Mining.

I. INTRODUCTION

Mobile applications are nowadays gaining a huge popularity
and importance. From a purely economical standpoint, their
market is incredibly increasing, and it has been estimated it
will reach about $70 billion in annual revenue by 2017 [3].
Besides that, it is possible to observe two phenomenon. For
some operating systems—such as Android—the number of
available devices is increasing, each one having its specific
characteristics, e.g., in terms of CPU, memory, Graphical
Processing Unit (GPU), and screen. In general, the hardware
market is releasing devices with better and better performance,
nowadays comparable to desktop computers. In such a context,
it may not be infrequent that an app undergoes fixes with the
aim of dealing with performance problems. These problems
may be due to the addition of a new feature in a scenario where
developers mainly focus on ensuring an early release. Or else,
they could happen for an improper usage of the Android APIs
on, in general, because of bad design/implementation choices.

So far, performance issues have been investigated in Web
applications [1], heterogeneous environments [5], or large-
scale applications [14]. Also, recently Zaman et al. have
conducted a qualitative study of performance bugs [20]. To
the best of our knowledge, there is only work on the analysis
of mobile app performance bugs by Liu et al. [12], limited to
the analysis of 70 real bugs.

This paper reports a study aimed at conducting a quantitative
and qualitative characterization of performance-related com-
mits for Android apps. First—and similarly to what previously
done in a work on energy-related commits [15]—we identify,

using regular expressions, commits explicitly referring to
performance-related issues. In other words, instead of using
static source code analysis—as done by Liu et al. [12],
and instead of using dynamic analysis—which would require
appropriate execution profiles, and not practicable on large-
scale—we rely on documented performance related changes,
as previously done by Ray et al. [17] for the analysis of bug
categories on GitHub.

We report the distribution of such commits, also analyzing
how do they vary across app categories. Then, using the card
sorting approach, we produce a taxonomy of performance
related concerns, and qualitatively describe some examples of
commits belonging to these concerns. With respect to work
such as the one of Liu et al. [12], our study has been con-
ducted in the large, featuring the analysis of 68,025 commits
from 2,443 open source Android apps. Of such commits,
457 (0.67%) of them, belonging to 180 apps, turned out to
be documented, performance-related commits. They generally
affected any kinds of apps, although categories in which user
experience was very important—e.g., health and fitness, or
photography—were slightly more affected than others. The
card sorting categorization revealed how the most frequent
kinds of performance-related commits were about GUI-related
changes, removing (performance-affecting) code smells, and
dealing with network or memory-related problems.

In summary, the main contributions of this paper can
be summarized as: (i) results of a study investigating
performance-related commits in 180 open source Android
apps; (ii) a taxonomy of the main kinds of performance-related
problems, obtained by applying card sorting [19]; and (iii) the
study replication package, featuring a dataset of categorized
performance-related commits1.

II. STUDY DESIGN

The goal of this study is to investigate performance-related
commits in Android apps, with the purpose of understanding
their nature and their relationship with projects’ characteristics,
such as project domain or size. The study context consists of
2,443 open-source apps and their evolution history. The study
aims at addressing the following research questions:
RQ1: To what extent developers consider performance issues

of Android apps?

1http://cs.gssi.infn.it/ICSME 2016

http://cs.gssi.infn.it/ICSME_2016

RQ2: What are the concerns that developers have when
dealing with performance issues of Android apps?

More specifically, RQ1 aims at assessing the frequency
in which app developers consider performance issues of the
app, whereas RQ2 aims at classifying the specific concerns
that developers have when considering the performance issues
of the app being developed (e.g., fast access to file system,
reactivity of the user interface, etc.)

The context of our study consists of a set of open-source
Android apps distributed in the Google Play store. We decided
to analyze mobile apps in the Google Play Store because
of its large market share in terms of both distributed apps
and sold smartphones with respect to other platforms such as
Apple iOS, Windows Phone, BlackBerry [9], [2]. Since we are
targeting mobile apps that have been designed and developed
as real projects with real users and we also aim at accessing
the performance concerns managed by their developers, the
objects of our study are Android apps that (i) are freely
distributed in the Google Play Store; and (ii) have their
versioning history hosted on GitHub.

Fig. 1 presents the process we followed for identifying our
target population, together with the number of apps considered
at each step. Basically, (i) we mined the well-known FDroid
open source apps repository for extracting all those Android
apps in which the description page contains both a link to
a GitHub repository and a link to a Google Play page; (ii)
we performed a custom search on GitHub by targeting all
the repositories in which the readme.md file contains a link
to a Google Play page, and (iii) we collected all the apps
enlisted in the community-maintained list of free and open-
source Android apps on Wikipedia2. After a merging and
duplicates removal activities we obtained 4,287 mobile apps.
At this point we filtered out (i) all those apps whose GitHub
repository does not contain an Android manifest file as they
clearly do not refer to real Android apps, (ii) all those apps
for which the corresponding Google Play page is not existing
anymore (i.e., they have been removed from the store for some
reason), and (iii) all those apps in which the Android file is not
in the root directory of an Android app (those cases happen
when the manifest file actually refers to an Android library,
to the binaries of some other app, etc.). The final population
resulting from this process is a set of 2,443 mobile apps, each
of them represented by its GitHub and Google Play identifiers.

The variables considered to address RQ1 are the (i) pCom-
mits, the number of performance-related commits in the
GitHub repository of the app, as compared to the overall
number of commits, and (ii) the app category on Google Play.
As for RQ2, we considered the different kinds of performance
concerns being dealt in performance-related commits.

We extracted the commits and pCommits using a script that
considers only the folder containing the source code and re-
sources of the mobile app, excluding back end, documentation,
test or mockups. In each repository we identified the folder

2http://wikipedia.org/wiki/List of free and open-source Android
applications

Fig. 1. Apps identification process.

of the app by the presence of an Android manifest file. The
mining script identifies a commit as performance-related if it
matches at least one of the following keywords: wait, slow,
fast, lag, tim, minor, stuck, instant, respons, react, speed,
latenc, perform, throughput, hang, memory, leak. Those
keywords have been identified by considering, analyzing, and
combining mining strategies in previous empirical studies on
software performance in the literature (both mobile and not
mobile-specific) [18], [20], [8], [13]. The mining script con-
siders all the possible combinations of both lower and upper
cases of each keyword. By applying this pattern matching, we
identified a set of 535 candidate performance-related commits.
Such commits were manually analyzed, and 78 of them were
identified as false positives. This produced a final set of 457
performance-related commits.

We extracted the category variable by mining the web page
of the Google Play store of each app. Then, we identified the
concerns by applying the open card sorting technique [19] to
categorize performance-related commits into relevant groups;
we performed the card sorting in two phases: in the first phase
we tag each commit with its representative keywords (e.g.,
read from file system, swipe lag) and in the second phase
we group commits into meaningful groups with a descriptive
title (e.g., UI issues, file system issues). To minimize bias, this
activity has been performed by two researchers and the results
have been checked by a third researcher; this activity resulted
in a set of 10 categories (see Section III).

III. RESULTS

In this section we answer each research question by pre-
senting the results of the study described in Section II

A. RQ1 - To what extent developers consider performance
issues of Android apps?

To answer this question, we count the frequency of
performance-related commits (see the pCommits variable)
with respect to all the commits of our dataset. Firstly, we can
observe that 7.5% of the apps in our dataset have at least one
performance-related commit (180 distinct apps over a total of
2,443). Among them, we identified 457 performance-related
commits (0.67%) over a total of 68,025 commits.

Table I shows the distribution apps, commits, and
performance-related commits across categories. Performance-
related commits are more frequent in very different categories
in terms of application context [4]; for example, the category

http://wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
http://wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

TABLE I
DISTRIBUTION OF ALL COMMITS AND PERFORMANCE-RELATED COMMITS

ACROSS CATEGORIES

Category #Apps #Commits #pCommits
Comics 4 216 5 (2.31%)
Customization 85 1,140 18 (1.58%)
Weather 21 1,016 15 (1.48%)
Health and Fitness 69 1,158 14 (1.21%)
Photography 36 5,533 67 (1.21%)
Tools 573 11,426 97 (0.85%)
News & Magazines 43 4,361 36 (0.83%)
Communication 91 2,632 21 (0.80%)
Productivity 216 3,952 28 (0.71%)
Games 350 5,703 39 (0.68%)
Shopping 13 457 3 (0.66%)
Libraries & Demo 70 640 4 (0.63%)
Travel & Local 71 2,888 16 (0.55%)
Media & Video 49 1,343 7 (0.52%)
Music and audio 62 1,226 6 (0.49%)
Social 69 7,843 37 (0.47%)
Medicine 8 704 3 (0.43%)
Finance 57 1,117 4 (0.36%)
Business 35 1,184 4 (0.34%)
Education 200 5,477 18 (0.33%)
Entertainment 128 3,089 8 (0.26%)
Transportation 70 1,916 4 (0.21%)
Books & Reference 41 1,638 2 (0.12%)
Lifestyle 82 1,366 1 (0.07%)

TABLE II
APPS WITH THE HIGHEST NUMBER OF PERFORMANCE-RELATED COMMITS

Google Play ID (GitHub) Category #pCommits
com.almalence.opencam
(almalence/OpenCamera)

Photography 31 (8.7%)

com.gopro.smarty (M66B/XPrivacy) Photography 24 (2.5%)
com.newsblur (samuelclay/News-
Blur)

News 18 (13.56%)

ca.cumulonimbus.barometernetwork
(Cbsoftware/pressureNET)

Weather 14 (7.27%)

org.wordpress.android (wordpress-
mobile/WordPress-Android)

Social 13 (4.75%)

net.usikkert.kouchat.android
(blurpy/kouchat-android)

Communication 11 (4.72%)

com.pacoapp.paco (google/paco) Health 10 (13.20%)
com.eleybourn.bookcatalogue
(eleybourn/Book-Catalogue)

Productivity 10 (1.9%)

org.qii.weiciyuan (makings/mst) Social 9 (4.57%)
org.quantumbadger.redreader (bamp-
tonm/RedReader)

News 9 (8.87%)

with the highest percentage of performance-related commits
is Comics, that primarily contains apps with an immersive
user experience and long usage sessions, followed by the
Customization and Weather categories, that primarily contain
utility, task-based apps with very short usage sessions, etc.
This observation may be an indication that performance issues
are somehow orthogonal across apps, independently of their
specific application context and user experience requirements.

Nevertheless, it is interesting to note that in our dataset there
are some apps with a relatively high number of performance-
related commits, the top-10 being listed in Table II. Note that
we considered the absolute number of performance-related
commits instead of percentages (also reported), as we want
to focus on the absolute number of performance-related tasks.
As one can notice, these apps are not tied to some very specific
categories. We manually analyzed the commit messages of the

app with the highest number of performance-related commits
(i.e., com.almalence.opencam), it has 17 commits concerning
memory consumption, 9 commits about user interface respon-
siveness, 4 commits about images optimization, and other
mixed types of commits; being it a photography app, the nature
of those commits is aligned with the features provided by the
app. We also manually analyzed all the other top-10 apps and
we found that the types of their performance-related commits
vary without exhibiting any specific pattern.

B. RQ2 - What are the concerns that developers have when
dealing with performance issues of Android apps?

Table III shows the 10 categories resulting from the card
sorting, together with an example of representative commit
message for each category (we randomly took it from our
dataset), the frequency and percentage of commits belonging
to each category. It is important to note that the sum of all
frequencies (586) is higher than the total number of identified
commits because each commit message can belong to more
than one category. More specifically, there are 422 commits
with 1 category, 62 commits with 2 categories, and 2 commits
with 3 categories. In general, Android developers primarily
focus on addressing one performance-related concern at a
time (422 times over 486), rather than addressing more than
one in combination (64 times over 486). In the following
we discuss each identified category of concerns. All together,
those categories give an indication about what are the main
concerns that developers perceive, consider, and address when
dealing with mobile apps performance.

The most frequent concern that developers have when
dealing with performance issues of Android apps is about the
responsiveness of the user interface, e.g., in terms of swipe
lags, screen layout drawing, lists scrolling responsiveness
(27.35% of commits). This is an indication of the fact that
developers know that end users perception of app performance
is of paramount importance and that end users just expect
mobile apps to properly work (e.g., without delays, with few
bugs, with a natural user experience), independently of the
implemented technical solutions, used tools or libraries [4].
Examples of UI concerns include: use of Android’s recycler
views instead of plain list views3, render images in slices,
prefer Android’s asynchronous tasks.

Another recurrent target of app developers is to fix existing
performance-related code smells (22.53% of commits), i.e.,
symptoms of poor design and implementation choices, mainly
due to time constraints of the project [6]. Examples of fixed
code smells include inefficient usage of regular expressions,
recurrent computations of constant data, usage of deprecated
decryption algorithms.

In a relatively large number of commits (21.66%) devel-
opers mention only generic concerns about app performance,
without detailing what the problem is and how it has been
potentially fixed. This is a clear behavioral anti-pattern because
generic commit messages make very difficult to know the

3https://developer.android.com/training/material/lists-cards.html

TABLE III
CATEGORIES OF IDENTIFIED CONCERNS.

Category Representative commit
message

#pCommits

User interface N FIX layouts for better
rendering performance

125 (27.35%)

Code smells N fixed String concatena-
tion performance issue

103 (22.53%)

Generic concerns N Performance and error
handling improvements

99 (21.66%)

Networking N Use a socket connection
when scanning for hosts in-
stead of isReachable. Set
performance options to pre-
fer fast connection. Enable
TCP NODELAY

59 (12.91%)

Memory N Fixed major memory
leak; should improve re-
sponsiveness on older de-
vices

50 (10.94%)

Loading time N Made initial load WAY
faster

34 (7.43%)

Images N Draw all static objects
on one image in android to
optimize performance

20 (4.37%)

Local database N Added indexes
for posts.postid and
posts.blogID to improve
performance of several
lookups

12 (2.62%)

File system N Separate file loading and
vault initialization to en-
hance performance

10 (2.18%)

Sensors N Performance fix: Closing
GPS service as soon as lat/-
long has been determined.

5 (1.09%)

nature of a performed change (e.g., it may fix a bug, implement
a new feature, improve code quality, etc.), its effects, to find
when a bug has been introduced, etc.

Networking is one of the area in which performance-
related commits occur a lot in mobile apps. For example,
making HTTP requests is one of the most energy consuming
operations in Android [10]. Our analysis shows that app
developers take special care of networking operations (12.91%
of commits) in their apps and refine their code in order to
mitigate the impact of networking operations on the overall
performance of the app. Examples of implemented solutions
include: reduce as much as possible the frequency of calls
when doing long polling, avoid making multiple requests in
parallel, check the status of the connection before making a
request to a server.

Keeping small the memory footprint of a mobile app is one
of the key solutions for improving its performance4, specially
for low-end devices. Developers are aware of this interaction
between memory usage and performance (10.94% of commits)
and apply solutions like stopping auxiliary services when
available memory gets low, avoiding to load potentially unused
data, etc.

4https://developer.android.com/training/best-performance.html

Loading time of app screens is of paramount importance for
its success, specially when considering the startup screen of
the app. Developers are focusing on this key aspect of their
apps (7.43% of commits) and apply solutions like reducing
the information to be parsed when starting an activity, caching
methods requiring a restart, etc.

Concerns with a frequency lower than 5% are: images man-
agement (4.37%), interaction with local databases (2.62%),
file system access (2.18%), and interaction with device sensors
(1.09%). Those concerns have been less targeted by app
developers; nevertheless, they are representative examples of
potentially relevant aspects to verify when considering the
performance of an Android app. Examples of implemented
solutions include:

• Images: load images directly in the required size, render
images one at a time;

• Local databases: perform queries in an asynchronous task,
add indexes to specific fields;

• File system: separate file loading from other activities,
use buffered streams for file decryption;

• Sensors: filter sensor data, limit the use of the GPS
service.

IV. THREATS TO VALIDITY

Threats to construct validity are mainly related to the use of
keyword matching to identify performance-related commits.
Under this perspective, we are assuming that if a commit
message contains specific keywords is describing a change
in the source code of the app related to its performance.
Therefore, we are aware that such approach may miss undoc-
umented performance-related commits. False positives have
been instead avoided by performing a manual analysis of the
identified commits.

Reliability validity threats concern the possibility of repli-
cating this study. We mitigated this possible threat by making
the replication package with all extracted data, mining, and
analysis scripts available to interested researchers.

Threats to external validity mainly concern the general-
ization of our results that relate to the representativeness of
the apps considered in this work. We reduced this threat by
considering a relatively large data set (i.e., 2,443 apps) and
by selecting apps that have been developed in the context of
real projects (i.e., all selected apps have been distributed in the
Google Play store and available to the public). Another poten-
tial threat to external validity is that fact that we consider only
freely available apps; this is an acceptable bias because free
apps represent more than 75% of all Google Play store apps
and they are downloaded more often [7]. Also, we analyzed
only commit messages written in the English language; this
potential bias can be considered as acceptable as English is
the dominant language used by Android developers.

V. RELATED WORK

Liu et al. [12] have conducted an empirical study compris-
ing of 8 popular and large Android applications with the aim of
finding performance-related bugs. They manually identified 70

performance bugs, which they further characterized into three
different categories. According to their research, GUI lagging
is the most common category with 75.7% of bugs followed by
energy leak with 14.3% and memory bloat with 11.4%. They
also implemented a static code analyzer to detect two types
of performance bugs anti-patterns. In our work, we are doing
a study of 2,443 open source repositories, mainly focusing on
documented performance related commits. Our core aim is to
find out key issues which cause the degradation of performance
in android applications. Also, we performed a fine-grained
classification of such commits through card sorting, which
resulted in a set of 10 different categories.

Moura et al. [15] followed an approach similar to ours,
however focusing on energy aware commits instead of
performance-related commits. There is also some work done
on identifying performance bugs from developer’s perspective.
Linares-Vsquez et al. [11] surveyed 485 GitHub developers to
investigate on the performance issues encountered by develop-
ers and their best practices to deal with such issues. The use of
multi-threading mechanisms resulted to be a widely adopted
solution to deal with performance bottlenecks in mobile apps.

Other studies focused on detection of performance bugs
through automated tools [15][16]. In our study, we relied,
instead, on documented (by means of commit messages)
performance-related changes.

VI. OUTLOOK AND FUTURE WORK

This paper reported results of a study aimed at identifying
documented performance-related commits in Android apps.
By analyzing commits of 2,443 apps, we discovered a total
of 457 performance-related commits spread across 180 apps.
We performed a qualitative analysis of such commits using
card sorting, and identified a total of 10 commit categories.
Overall, performance commits mainly related to issues found
in the app user interfaces. Other than that, we also found
frequent commits aimed at removing some code bad smells or
at improving some part of the app logic and, finally, dealing
with lags in the networking connection. Last, but not least,
we found improvements related to I/O towards file system or
databases, and related to the access to sensors.

As a preliminary result, the concern categories we identified
can be used as checklist by developers in order to see if they
are considering all major performance-related aspects of their
mobile app.

Future work aims at performing a deeper analysis on the
commits’ source code to (i) study performance regression
problems, (ii) investigate what kinds of performance smells
typically occur in mobile apps and how they are identified and
solved by developers, and (iii) to investigate on the measure of
effect of performance improving changes in the source code of
mobile apps. Finally, further research is needed to find out if
the results apply to other app markets and mobile platforms.

REFERENCES

[1] T. M. Ahmed, C. Bezemer, T. Chen, A. E. Hassan, and W. Shang. Study-
ing the effectiveness of application performance management (APM)

tools for detecting performance regressions for web applications: an
experience report. In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX, USA, May
14-22, 2016, pages 1–12, 2016.

[2] Dan Crawley. VentureBeat report, 2014. http://venturebeat.com/2014/
10/15/google-play-downloads-60-percent.

[3] Digi-Captial. Mobile internet report q1 2015. http://www.digi-capital.
com/reports.

[4] B. Fling. Mobile design and development: Practical concepts and
techniques for creating mobile sites and Web apps. O’Reilly Media,
Inc., 2009.

[5] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, and P. Flora.
An industrial case study on the automated detection of performance
regressions in heterogeneous environments. In 37th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2015, Florence, Italy,
May 16-24, 2015, Volume 2, pages 159–168, 2015.

[6] M. Fowler. Refactoring: improving the design of existing code. Pearson
Education India, 2009.

[7] I. Gartner. Gartner says free apps will account for nearly 90 percent
of total mobile app store downloads in 2012, 2012. http://www.gartner.
com/newsroom/id/2153215.

[8] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding
and detecting real-world performance bugs. ACM SIGPLAN Notices,
47(6):77–88, 2012.

[9] A. Lella, A. Lipsman, and B. Martin. The Global Mobile Report: How
Multi-Platform Audiences and Engagement Compare in the US, Canada,
UK and Beyond, 2015. comsCore white paper.

[10] D. Li, Y. Lyu, J. Gui, and W. G. Halfond. Automated Energy Opti-
mization of HTTP Requests for Mobile Applications. In Proceedings
of the 38th International Conference on Software Engineering (ICSE),
May 2016.

[11] M. Linares-Vasquez, C. Vendome, Q. Luo, and D. Poshyvanyk. How
developers detect and fix performance bottlenecks in android apps.
In ICSME’15: Proceedings of the 31st International Conference on
Software Maintenance and Evolution, 2015.

[12] Y. Liu, C. Xu, and S. Cheung. Characterizing and detecting performance
bugs for smartphone applications. In 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07,
2014, pages 1013–1024, 2014.

[13] I. Malavolta, S. Ruberto, V. Terragni, and T. Soru. End users perception
of hybrid mobile apps in the google play store. In Mobile Services
(MS), 2015 IEEE International Conference on, pages 25–32. Institute
of Electrical and Electronics Engineers (IEEE), June 2015.

[14] H. Malik, H. Hemmati, and A. E. Hassan. Automatic detection of
performance deviations in the load testing of large scale systems. In
35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, pages 1012–1021, 2013.

[15] I. Moura, G. Pinto, F. Ebert, and F. Castor. Mining energy-aware
commits. In 12th IEEE/ACM Working Conference on Mining Software
Repositories, MSR 2015, Florence, Italy, May 16-17, 2015, pages 56–67,
2015.

[16] A. Nistor and L. Ravindranath. Suncat: Helping developers understand
and predict performance problems in smartphone applications. In ISSTA
2014: Proceedings of the 2014 International Symposium on Software
Testing and Analysis, pages 282–292, 2014.

[17] B. Ray, D. Posnett, V. Filkov, and P. T. Devanbu. A large scale study
of programming languages and code quality in github. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, November 16 -
22, 2014, pages 155–165, 2014.

[18] M. Selakovic and M. Pradel. Performance issues and optimizations in
javascript: an empirical study. In Proceedings of the 38th International
Conference on Software Engineering, pages 61–72. ACM, 2016.

[19] D. Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[20] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on
performance bugs. In 9th IEEE Working Conference of Mining Software
Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland, pages
199–208, 2012.

http://venturebeat.com/2014/10/15/google-play-downloads-60-percent
http://venturebeat.com/2014/10/15/google-play-downloads-60-percent
http://www.digi-capital.com/reports
http://www.digi-capital.com/reports
http://www.gartner.com/newsroom/id/2153215
http://www.gartner.com/newsroom/id/2153215

