Robot Runner: A Tool for Automatically Executing
Experiments on Robotics Software

Stan Swanborn, Ivano Malavolta
Vrije Universiteit Amsterdam, The Netherlands
s.0.swanborn@vu.nl, i.malavolta@vu.nl

Abstract—Software is becoming the core aspect in robotics
development and it is growing in terms of complexity and size.
However, roboticists and researchers are struggling in ensuring
and even measuring the quality of their software with respect to
run-time properties such as energy efficiency and performance.

This paper presents Robot Runner, a tool for streamlining the
execution of measurement-based experiments involving robotics
software. The tool is able to automatically setup, start, resume,
and fully replicate user-defined experiments. Thanks to its plugin-
based architecture, the tool is fully independent of the number,
type, and complexity of the used robots (both real and simulated).
GitHub repository — https://github.com/S2-group/robot-runner
Youtube video — https://youtu.be/le-SAXI2k1E

I. INTRODUCTION

Context. The intensive usage of robots is becoming com-
monplace and successful in several industrial sectors like
manufacturing, logistics, delivery, transportation, healthcare,
security, entertainment [1]. Despite the advances in electronics
and mechanics, the main barrier in robotics is software. As
robot capabilities increase, so does the complexity of their
controlling software, which is shifting towards an intricate
network of interdependent components running millions of
lines of code [6]. Roboticists are struggling in ensuring and
even measuring the quality of their software with respect to
run-time properties such as energy efficiency and performance
[8]. When this fails, the result is faulty and inefficient robots,
unpredictable project delays, and general lack of trust by users.
The tool. This paper presents Robot Runner (RR), a tool
to automatically execute measurement-based experiments on
robotics software. Starting from a self-contained Python-based
description of the design of the experiment (and experiment-
specific business logic), RR automatically executes several
runs of a robotic system (while collecting measurement data)
and packages collected measures in a ready-to-analyze format.

RR is designed as a plugin-based tool. Run-time profilers
and other third-party components can be reused across ex-
periments, thus streamlining the conduction of experiments in
the area of robotics software. Plugins can produce different
measures and multiple plugins can be used within a single
experiment. Currently, we provide plugins for measuring the
(i) energy consumption of battery-powered robots and (ii)
CPU and memory utilization of UNIX-based robots. We
preliminarily evaluated the tool via a series of experiments
using a ROBOTIS TurtleBot3 robot as subject.

RR is based on the Robot Operating System (ROS) [7].
ROS is the de-facto standard for robotics software. It supports

more than 140 types of robots and has a vibrant open-source
ecosystem with several GitHub repositories containing ROS-
based software, 4,152 publicly-available ROS packages, 7,696
ROS Wiki users, and 36,229 ROS Answers users [3].

Intended Usage. Firstly, researchers can use RR to conduct
new empirical studies on the run-time quality of robotics
software; in this context, once the design of the experiment
is defined, the researcher can straightforwardly encode it
into a (Python-based) configuration, launch it, and collect
the ready-to-analyse measurement data. Secondly, researchers
can easily replicate already-conducted empirical studies by
reusing/customizing an already-existing experiment configu-
ration. Thirdly, researchers can use RR to benchmark run-
time estimation models. For example, a researcher proposing
a new simulation-based energy model can use RR to rigorously
compare it against the energy consumption collected from
real robots by reusing exactly the same experiment definition
and robotics missions. Practitioners can use RR to eval-
uate alternative implementations/architectures/packages over
a common benchmark or a representative robotic mission.
This helps practitioners in taking better informed decisions
on their systems and lowering the risks encountered when
reusing third-party software. This is specially valid in the
ROS ecosystem, where several third-party packages exist for
common robotic capabilities like object recognition, planning,
Simultaneous Localization and Mapping (SLAM), etc. [6], [3].
In this context, having an objective assessment of which ROS
packages are best suited for the system under development is
fundamental, specially because there is evidence that in the
ROS ecosystem third-party packages can suffer from unpre-
dicted performance issues, outdated implementations, bugs [3].

II. ROBOT RUNNER

As shown in Figure 1, RR experiments involve two main
subsystems: (i) RR acting as experiment orchestrator and (ii)
the robotic system being measured. In the figure the robotic
system is depicted as a Turtlebot3, but RR is fully independent
of the number, type, and complexity of the robots used in
the experiment. RR is implemented as a lightweight Python
package and as such it can run on any machine able to run
Python code, typically a laptop. The implementation of RR
is fully independent from the robotic system being measured,
provided that the latter runs on ROS and it receives commands
and data as ROS messages.

This clear separation of roles gives us several advantages:
(i) RR can run on any machine able to run Python code '
independently of the measured robotic system, (ii) the experi- -
ment does not affect the measured robotic system, mitigating *
potential internal threats to validity [9], (iii) the measured
robotic system can be reused as is during the experiment,
without needing to adapt it for making it compatible with the
experiment being executed, and (iv) the same experiment can
be easily run on either real or simulated robots, thus reducing
future experiment modification/replication costs and speeding
up experiments execution.

Robot Runner

- Raw
v Lmeasures
Event Manager '
i Robotic
) INA219 Profiler
_B| - system
a Experiment
Orchestrator Turtlebot Basic
Experiment l l
Configuration Progress Config
| Manager Validator
:ROS 4_1
D et commands / data
—> Direct calls - - => 1/0 operations
Run Table Event-based messages === ROS-based messages

Fig. 1: Architecture of Robot Runner
A. Experiment configuration

The main input of RR is the experiment configuration. It
provides a Python-based representation of the whole experi-
ment. It allows the user to automatically setup, start, resume,
and replicate an experiment, while treating the internal details
of both the robotic system and RR itself as black boxes.
The rationale for having a Python-based representation of
the experiment (e.g., instead of a static configuration file)
is to allow users to flexibly define the business logic of
their experiments in a self-contained manner. This is aligned
with the ROS ecosystem, where launch configuration files are
defined in Python in ROS2, instead of XML in ROSI.

Import plugins
import plugins.systems.BasicTurtlebot3

3 import plugins.profilers.Ina219

4

import plugins.profilers.PsUtil

class RobotRunnerConfig:
Static parameters
experiment name: str = 'basic_experiment'
required _ros_ version: int = 1
required ros_ distro: str = "melodic"
operation type: OperationType = OperationType.SEMI
results output path: Path = Path('~/example_mission_results/")

def _ _init__ (self):
Events subscription
EventSubscriptionController.subscribe to multiple events([
(RobotRunnerEvents. LAUNCH MISSION, selflaunch mission),
..
D

Event callbacks
def launch mission(self, context: RobotRunnerContext) —> None:
.. code for launching the robotic mission
Creation of the run table
def create run_ table(self) —> List[Dict]:
run_ table = RunTableModel(
factors = [
Factor('Task', ['Computation’, 'Video', 'Network']),
Factor('Repetition ', range (1, 6))],

data_ columns=['CPU', 'Memory', 'Energy']
)
run_table.create_experiment run_ table()
run_table.randomize runs_order()
return run_table

Listing 1: Excerpt of basic experiment configuration

Listing 1 shows an excerpt of a basic experiment config-
uration'. The relevant information about the experiment is
encapsulated into a dedicated class, which can be roughly
divided into four main parts:

o [mport plugins (lines 1-4): the user imports the plugins
required for running the experiment (see Section III).

e Static parameters (lines 7-12): in addition to the name
of the experiment (line 8), the user can define the re-
quired ros_version and required ros distribution (lines
9-10) for ensuring that the experiment is executed on an
expected environment. The operation type allows users to
execute the experiment in two different modes: (i) AUTO
— on the completion of each run, the next run is started
consecutively, without interruption, and (ii) SEMI — on the
completion of each run, the next run is only started if the user
signals to continue the experiment (this is useful in case a
manual intervention is needed after each run, e.g., substituting
the battery of a robot). The results output path is used to
specify the location for persisting the output of the experiment.
o Event subscriptions (lines 15-23): RR triggers a global
event at specific points during the execution of the experiment
(e.g., before every run of the experiment, to start/stop the
measurement, to launch a mission, etc.). Users can subscribe
to those events (e.g., lines 16-19) and implement their own
callbacks containing the business logic for managing them
(lines 21-23), e.g., launching the robotic mission. The events
currently supported by RR are shown in Figure 2.

For each run of the experiment
stop_measurement

before_experiment

after_experiment
: start_measurement

O

' stop_run contlnuela

start_run : .
H © populate_run_data :

i launch_mission

3
>

Fig. 2: Timeline of events triggered during an experiment

e Creation of the run table (lines 24-34): the run table contains
the plan of all the runs of the experiment, together with the
measures collected in each run (see Section II-B). The cre-
ate run_ table function is meant to create the structure of the
run table of the experiment. RR provides a dedicated API to
concisely create a run table starting from the factors (and treat-
ments) of the experiment, the dependent variables, and their
(possibly randomized — line 33) combination. By following
the principle of inversion of control, the create run_table
function is automatically called by RR.

B. Output Produced by Robot Runner

The main output of RR is a populated run table. Figure
3 shows a fragment of the run table created in Listing 1.
The first two columns are used for tracking the progress of

IThe full list of the parameters, events, and additional functionalities
supported by RR is available in its GitHub repository.

the experiment, then we have a group of columns with the
timestamp of each event show in Figure 2 (useful in case of
problematic runs), then we have one column for the Task
factor (which can have the 3 treatments shown in line 28),
one column for Repetition, which is used for repeating each
task 5 times so to account for possible fluctuations of the
collected measures, and finally we have the 3 columns for
CPU, memory, and energy. In our example, the run table has
15 randomly-ordered rows (3 tasks, each with 5 repetitions).

Progress Events timestamps Factors Measures

ID |Status Task [Repetition| CPU |Memory| Energy
r_1 | Done video 1 16.5 | 247 877
r2 - network 5 17.8 | 238 719

Fig. 3: Fragment of run table

If required, users can subscribe to the populate run _data
event (see Figure 2) to intercept the measures collected after
each run and apply their own experiment-specific aggregation
policy. In this way, plugin developers can focus on producing
the measures and providing a default aggregation policy,
instead of trying to cover all possible use cases for their plugin.

RR reserves a dedicated location in the file system for each
plugin; this location can be used by the plugin developer to
store the raw measures collected during the experiment. The
format of the persisted raw data is plugin-dependent and is
decided by the developer of each plugin according to their
specific needs/constraints.

C. Internal Components and Plugins

Experiment Orchestrator. Given the run table of the experi-
ment, the Experiment Orchestrator is responsible for executing
each run of the experiment. Before the actual execution of the
experiment, the orchestrator interacts with the Config Validator
for checking if the experiment configuration is well formed,
otherwise the experiment is aborted with clear error messages
and suggested solutions. Then, the orchestrator iterates over
each row of the run table and executes it accordingly. During
the experiment, the orchestrator (i) calls the Event Manager
in order to trigger the key events shown in figure 2 and (ii)
informs the Progress Manager about the status of the run being
executed (i.e., whether it is successfully completed or aborted).
Finally, at the end of the experiment, it informs the user about
the final outcome of the experiment, where to find the results,
and other diagnostics information.

Event Manager The Event Manager acts as message broker
between the publishers and subscribers of the key events
of the experiment. At the time of writing, plugins are the
publishers and the experiment configuration is the subscriber
(with a dedicated callback function for each relevant event).
This mechanism allows third-party plugin developers to be
independent both from the internals of RR and the experiment-
specific business logic in the experiment configuration. Each
event triggered by RR is enriched with (i) contextual informa-
tion about the current run being executed (i.e., the current
combination of the treatments) and (ii) any plugin-specific
information represented as a set of key-value pairs.

Config Validator. It performs diagnostic checks on the exper-
iment configuration provided by the user (e.g., check if all the
static parameters fall within acceptable values) and provides
user friendly warning/error messages.

Progress Manager. The first responsibility of this component
is to build an in-memory representation of the run table.
Here RR distinguishes between two cases: (i) if the CSV file
of the run table does not exist, then the Progress Manager
executes the user-provided create experiment run_table
function, otherwise (ii) it parses the contents of the CSV file.
The latter case can be exploited by RR users in three ways:
(i) to manually build the file of the run table for planning
experiments with non-canonical trials or imbalanced designs,
(i1) to resume the execution of experiments carried out in
batches, or (iii) to restore the execution of an experiment after
an unexpected error without incurring in data loss. During the
experiment execution, the orchestrator visits each row of the
run table, executes it, and informs the Progress manager about
the completion of the run. Finally, this component persists the
timestamps and collected measures of the current run.
Plugins. RR follows a plugin-based architecture where third-
party software is developed independently of the experiment
orchestration logic. In order to avoid clashes or data loss, the
only requirements for plugin developers are: (i) plugins can
persist raw data only in their reserved file system subtree and
(ii) plugins can populate the run table with new measures only
via the Event Manager. The rationale behind this design deci-
sion is to avoid having silos-like experiments where an ad-hoc
software pipeline is developed for each experiment. Rather, we
expect (and hope) that over time different teams and research
groups focus their efforts on self-contained RR plugins, which
can be opportunistically reused by the community. At the time
of writing, three plugins are available for RR:

e Turtlebot Basic: implements a minimal robotic mission
for benchmarking measurement-based experiments involving a
Turtlebot3 robot. The mission is composed of the steps shown
in Figure 4, where < task > is always the same and, depend-
ing on the assigned treatment (see Listing 1), it can be either:
(i) computation: computing the Fibonacci sequence for 10
seconds; (ii) video: recording a video via 5-megapixel camera
for 10 seconds; and (iii) network: continuously issuing HTTP
GET requests to the same remote address for 10 seconds. The
mission is designed so that (i) it explores different potential
sources of energy consumption and (ii) it is circular, i.e., there
is no need to reposition the robot at each run.

o INA219 Profiler: measures the energy consumed by battery-
operated robots. Specifically, an Arduino NANO onboard the
robot measures the power drawn from the battery via a INA219
high-side sensor (with a 200Hz sampling rate); at the end of
the mission, the plugin (i) applies the £ = P x t formula,
where P = measured power and ¢ = the duration of the mission
and (ii) emits an RR event containing the value of E.

e PsUtil Profiler: encapsulates the ps UNIX utility and runs
it onboard the Turtlebot3 robot at 10Hz, while retrieving
information about the system memory and CPU utilization,
both as percentage.

III. ROBOT RUNNER IN ACTION

In this section we report the results of our example experi-
ment described in Listing 1. The experiment uses the Turtlebot
Basic plugin as benchmark and the two INA219 Profiler and
PsUtil Profiler plugins for collecting run-time measures. For
the sake of space, in this section we report the results on
energy consumption only.

ﬂ Do task f—\\ Rotate 180° | ﬂ Go forward |

g m m s mh

= 110004 ¢ o o o o i !

€ 100004 | ! : i

% 90004 ! | :

2 —! i

£ 8000 | ;
O X P

I SN T
Mission time (seconds)

Fig. 4: Examples of power measures (computation, network,

video, S= sleep for 5 seconds)

Figure 4 shows the power measurements collected during
one randomly-chosen run for each treatment of the Task factor.
RR and its INA219 plugin are able to clearly distinguish the
various phases of the robotic mission just by looking at their
power consumption, where we can observe some interesting
phenomena: (i) the movement of the robot is the operation
that consumes more power (~10.5W), (ii) the three types
of tasks are clearly distinguishable, where computation and
video recording tend to consume more power (~9.5W) than
networking (~8W)?, (iii) even when sleeping, after the initial
movement the robot has a higher power consumption w.r.t. the
first sleep operation, hinting that some hardware components
of the robot are optimistically kept alive for subsequent usages.

For replicability and independent verification, the experi-
ment definition, complete raw data, and full ROS environment
are available as a self-contained Docker image in our replica-
tion package (this further exemplifies the versatility of RR).

IV. RELATED WORK

To the best of our knowledge, RR is the first tool for
the automatic execution of measurement-based experiments
on robotics software. Similar tools exist in other domains,
specially in energy-efficient mobile development. For example,
we are maintaining Android Runner [5], a framework for
executing experiments targeting Android native and web apps.
As a matter of fact, the design of RR is based on the experience
we gained from conducting more than 30 experiments via
Android Runner. Specifically, RR inherits the customizability
of experiments via external business logic, the plugin-based
architecture, and the start/resume mechanism implemented in
the Progress Manager. In addition to the technical differences
due to the completely difference design space of the systems
under measurement (i.e., robots vs Android apps), the main
difference between the two tools is that Android Runner

2We speculate that networking exhibits an almost constant power con-
sumption since its effect is masked by the high-frequency exchange of ROS
messages performed by the sensors of the robot

is platform-specific and always assumes to be interacting
with a physical and always-available device, whereas RR is
completely independent from the type and number of used
robots (either simulated or real). Other Android-specific tools
include GreenMiner and PETrA. GreenMiner [4] is a hard-
ware/software tool that physically measures the power used by
an Android device, while automatically mining and executing
mobile apps. Finally, PETrA [2] is another tool for estimating
the energy consumption of Android apps via a pure software-
based energy profiling technique.

V. CONCLUSION AND FUTURE WORK

In this paper we presented Robot Runner, a tool for the
automatic execution of measurement-based experiments on
robotics software. The tool is one-of-its-kind since it masks the
complexity of orchestrating experiments on robotics software;
this allows roboticists and researchers to focus on what they
are best at, i.e., robotics software development, the design and
data analysis of empirical studies targeting robots.

Robot Runner is a building block of a wider research effort
targeting the energy efficiency of robotics software. Specifi-
cally, we are in the process of mining open-source software
repositories and developer discussion platforms for building
a catalog of architectural tactics for improving the energy
efficiency of ROS-based systems; we use RR to conduct
controlled experiments for providing evidence about the run-
time impact of each identified tactic in terms of quantitative
metrics like tasks execution times, energy consumption of the
robots, and communication overhead.

ACKNOWLEDGMENTS

This research is partially supported by the Dutch Research
Council (NWO) through the OCENW.XS2.038 grant.

REFERENCES
[1

[

From Internet to robotics: A roadmap for US robotics: 2020 Edition.
http://www.hichristensen.com/pdf/roadmap-2020.pdf, Oct 2020. [Online;
accessed 29. Oct. 2020].

[2] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia. Software-based energy profiling of android apps: Simple,
efficient and reliable? In International conference on software analysis,
evolution and reengineering (SANER), pages 103—114. IEEE, 2017.

[3] P. Estefo, J. Simmonds, R. Robbes, and J. Fabry. The robot operating

system: Package reuse and community dynamics. Journal of Systems and

Software, 151:226-242, 2019.

A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and

S. Romansky. Greenminer: A hardware based mining software reposito-

ries software energy consumption framework. In Working Conference on

Mining Software Repositories (MSR)s, pages 12-21, 2014.

[5] 1. Malavolta, E. Grua, C.-Y. Lam, R. de Vries, F. Tan, E. Zielinski,

M. Peters, and L. Kaandorp. A framework for the automatic execution

of measurement-based experiments on android devices. In Conference on

Automated Software Engineering Workshops, pages 61-66. ACM, 2020.

1. Malavolta, G. Lewis, B. Schmerl, P. Lago, and D. Garlan. How do you

architect your robots? state of the practice and guidelines for ROS-based

systems. In International Conference on Software Engineering, 2020.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng. ROS: an open-source robot operating system. In /CRA

workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[8] S. Swanborn and I. Malavolta. Energy efficiency in robotics software:
A systematic literature review. In Conference on Automated Software
Engineering Workshops, pages 137-144. ACM, 2020.

[9] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslén.

Experimentation in Software Engineering. Springer, 2012.

[4

=

[6

—_

[7

—

