
Navigation-aware and Personalized Prefetching of
Network Requests in Android Apps

Ivano Malavolta†, Francesco Nocera∗, Patricia Lago†, Marina Mongiello∗
†Vrije Universiteit Amsterdam, The Netherlands

∗Polytechnic University of Bari, Italy
{i.malavolta | p.lago}@vu.nl, {francesco.nocera | marina.mongiello}@poliba.it

Abstract—Prefetching network requests has been advocated as
a highly effective way of reducing network latency experienced
by the user since it allows network responses to be generated
immediately from a local cache.

In this paper we discuss how user navigation patterns can be
used for developing navigation-aware techniques for personalized
prefetching of network requests of Android apps. The proposed
idea opens for a new family of prefetching opportunities since it
focusses at a higher level of abstraction with respect to state-
of-the-art approaches for network requests prefetching. The
proposed idea allows the development of approaches which adapt
their prefetching behaviour according to the unique navigation
patterns each user exhibits while interacting with a mobile app.

Keywords-Android, Network Prefetching, Personalization

I. INTRODUCTION

The fact that mobile apps rely on wireless connectivity (e.g.,
3G, WiFi) is emerging as a recurrent challenge for mobile
developers, who must take into account the unpredictability
of the network underlying their apps [1], [2]. For developers,
failing to properly consider network transfers may negatively
affect the user experience, and in some cases hinder an effec-
tive usage of the app itself [3]. In turn, this can impact the app
user ratings and reviews, which, unless properly addressed, can
negatively impact the app’s success.

Prefetching network requests has been advocated as an
effective way of reducing the latency experienced by the users
since it allows network responses to be generated immediately
from a local cache [2]. However, despite their promising
results, existing prefetching approaches for mobile apps (e.g.,
[4]) can still be improved in many ways: (i) they neglect the
interaction patterns of each individual user (e.g., how she nav-
igates within the app), by either prefetching resources that will
not be used, or limiting their prefetching algorithms to a set of
“safe” situations (hence limiting their potential), (ii) they do
not change as users’ interaction patterns change, and (iii) they
rely on approximated static analysis techniques for identifying
when and which network resources can be prefetched, thus
potentially leading to unhandled control of data flow paths
(e.g., in case of reflection) or to the identification of paths that
are infeasible at run-time (i.e., false positives) [5].

With the aim of addressing the limitations above, in this
paper we present our first investigation into a navigation-aware
technique for personalized prefetching of network requests of
Android apps. The proposed technique is called NAPPA and

it is fully automated (with the possibility of custom behaviour
provided by developers), transparent w.r.t. the back-end of the
app (i.e., it is independent from the data types provided by
the back-end and it does not require any modifications in the
business logic of the back-end), and adapts its prefetching
behaviour according to the navigation patterns of the user.

NAPPA revolves around the concept of Extended Navigation
Graph (ENG), where nodes represent Android activities in the
app, edges represent navigations among activities, and each
edge is annotated with information about the intent used for the
navigation and the probability of being performed by the user.
The intuition behind NAPPA is to build and keep updated the
ENG of the app at run-time and to prefetch network requests
according to the paths that will be most likely travelled by
the user according to the current status of the ENG. As such,
our prefetching mechanism is personalized since every app
installation has its own ENG with different transitions and
weights according to each user’s unique navigation patterns.

Given the source code of an Android app, NAPPA acts in
two phases: (i) at development time NAPPA automatically
extracts all activities of the app and instruments it in order
to continuously probe user navigation events and to inject
the business logic for performing network prefetching, and
(ii) at run-time NAPPA builds and keeps the ENG up to
date according to user navigation events, prefetches network
requests according to the current status of the ENG, and
intercepts the app’s network requests for serving prefetched
resources, instead of using the network. We opted for building
the ENG at run-time in order to ensure that its edges represent
valid navigation transitions, as opposed to building it via static
analysis, which may lead to incomplete ENGs due to well-
known challenges such as the management of the implicit
control/data flow among Android components, user-generated
events, reflection, and multi-threading [5].

To the best of our knowledge, we are the first to propose
an approach for prefetching network requests of Android apps
that (i) works at a high level of abstraction (i.e., the navigation
of the user within the app), (ii) adapts to each individual user
navigation patterns, and (iii) does not inherit the limitations of
current static analysis techniques.
Paper outline. Sections II and Section III present background
concepts and NAPPA, respectively. Sections IV and V discuss
the next steps of this research and related work, respectively.
Section VI closes the paper.

II. BACKGROUND

A. User Navigation in Android Apps

According to the Android programming model [6], Android
activities are the main building blocks of the app and represent
single screens of the UI. Activities are in charge of (i) reacting
to user events (e.g., a touch on the screen), (ii) executing some
specific functionality (possibly with the help of other app’s
components like services or content providers), and (iii) up-
dating the user interface of the app for providing information
to the user. An Android app comprises multiple activities to
provide a cohesive user experience. When a user navigates
within an app, the source activity starts a new instance of
the target activity by creating an intent and passing it to the
startActivity() method [7]. In this context, an Android intent
is composed of two main parts [7]: (i) the activity to start and
(ii) the extras representing the additional information required
to perform the action, defined as a set of key-value pairs.

B. Network Requests in Android Apps

The majority of network-connected Android apps request
and receive data from their remote backends in a RESTful
fashion via the HTTP protocol [8], [9]. Android developers
can choose among a plethora of HTTP client libraries for
their apps, such as OkHttp1, Volley2, Retrofit3. Android HTTP
clients provide features such as connection pooling, concurrent
requests, socket sharing, etc. In this study we focus on OkHttp
since it is the HTTP client providing the official implementa-
tion of the HttpUrlConnection interface from Android 4.4 and
it is at the basis of the most widely used networking libraries
for Android, such as Volley, Picasso, and Retrofit [10].

C. The Prefetching Opportunity

If we consider activities as nodes and explicit intent
launches as transitions among nodes, we can obtain the
navigation graph of an Android app. If we enrich this graph
with (i) information about the probabilities of triggering each
transition, (ii) the URLs requested by every activity, and
(iii) how intent extras can map to dynamic fragments of the
requested URLs, then we obtain the Extended Navigation
Graph (ENG). NAPPA exploits the ENG at run-time in order
to (i) resolve as soon as possible the URLs to prefetch and (ii)
prefetch only the network requests belonging to the activities
that will be most likely visited by the user according to her own
navigation patterns exhibited during previous usage sessions
of the app. This reasoning leads to the navigation-aware and
personalized prefetching of network requests for Android apps.

III. THE APPROACH

We designed NAPPA as a two-phased technique: the first
phase is performed only once at development time and the
second one is carried out at run-time throughout the execution
of the app.

1http://square.github.io/okhttp
2https://developer.android.com/training/volley
3https://square.github.io/retrofit/

A. NAPPA at development time

As shown in Figure 1, the only input required by NAPPA
is the original source code of the app being developed.
NAPPA does not impose any specific development style to
the developer, provided that the app makes HTTP requests by
passing through OkHttp.

Original
app code

Extract
activities

Inject navigation
probes

Inject extra
probes

ENG

instrumentation

Instantiate
network

interceptor

Fig. 1: Overview of NAPPA at development time

The first step of NAPPA is the extraction of all activities
of the app in order to build the initial version of the ENG. This
step is realized by (i) parsing the AndroidManifest.xml file
of the app, (ii) producing a node in the ENG for each detected
activity and (iii) labelling each node with the full path of the
Java class implementing the activity. Since it is mandatory to
declare all activities of an Android app in its manifest file4,
the produced ENG is complete with respect to the coverage
of all activities of the app being analysed.

Then, NAPPA injects a navigation probe in the Java
class corresponding to each extracted activity. The navigation
probe notifies NAPPA when a navigation occurs from/to every
activity of the app at run-time. This step is realized by injecting
notification statements (i.e., probes) in the body of the onStart
and onStop methods of each previously extracted activity.
Since those methods are called by the Android OS every time
it needs to make the current activity visible or not visible to
the user, NAPPA is able to correctly and timely detect any
transition within the ENG of the app.

The next step consists in the injection of extra probes,
which will be in charge of notifying NAPPA every time an
intent’s extra is set by the app. This step is realized by injecting
notification statements immediately after a call to either the
putExtra or putExtras methods in each activity (they are
the only methods in the Intent class where its extra fields can
be changed).

Finally, NAPPA instantiates a network interceptor in
order to log all HTTP requests issued by the app and serve
prefetched resources. At run-time the activities performed by
the network interceptor are totally transparent to the developer.

Summarizing, at the end of the steps described above,
NAPPA has (i) extracted the ENG of the app containing all
activities of the app, (ii) instrumented the app with probes
for notifying about navigation and intents’ extra update events
at run-time, and (iii) added a transparent network interceptor
for logging all outgoing HTTP requests of the app at run-
time and serving prefetched resources. All those steps are

4https://developer.android.com/guide/topics/manifest/activity-element

http://square.github.io/okhttp
https://developer.android.com/training/volley
https://square.github.io/retrofit/
https://developer.android.com/guide/topics/manifest/activity-element

performed automatically without requiring any intervention by
the developer.

B. NAPPA at run-time

Figure 2 shows the main components of NAPPA at run-
time. All together they are responsible for (i) keeping the ENG
always up-to-date according to the navigations and actions per-
formed by the user, (ii) identifying which network resources
can be prefetched, (iii) prefetching network resources, and
(iv) making prefetched resources available to the app via a
lightweight URL map. In the following the behaviour and main
responsibilities of these components of NAPPA are presented.

Prefetching-enabled app

Instrumented
app code

Extras
monitor

Prefetcher

Backend

Network
interceptor

0.8
0.10.1

0.5

0.5

URL map

ENG

triggers

populates

fetches

fetches

analyses
Navigation

monitor

fetches

updates

Fig. 2: Overview of NAPPA at run-time

The Navigation monitor is a passive component, which is
triggered every time a navigation probe in the app raises a
navigation event (i.e., every time the user is moving between
two screens of the app). The main responsibilities of the
navigation monitor are: (i) to keep track of the current activity
within the ENG, (ii) to add a transition in the ENG if a raised
navigation event is involving a target activity that has never
been visited before, (iii) to update the weight on the transitions
of the ENG for every received navigation event, and (iv) to
trigger the Prefetcher component at every navigation event.

The Extras monitor is also a passive component and it is
triggered whenever a previously-injected extra probe raises an
event related to the setting of one of the intent’s extra fields.
The main responsibilities of the extra monitor are: (i) to update
the ENG with the newly set extra field, and (ii) to trigger the
Prefetcher component for every received event.

At the core of NAPPA lies the Prefetcher. It is triggered by
the two monitor components every time a user navigates within
the app or an intent’s extra is set; then, the Prefetcher analyses
the current ENG and, based on the currently-prefetchable
network resources, it fetches them from the backend of the
app and stores them into the URL map. It is important to
note that we designed NAPPA with separation of concerns
and maintainability in mind: if a different prefetching algo-
rithm will be needed in the future or the developer needs
a custom prefetching algorithm (e.g., by exploiting machine
learning techniques for better predicting the user’s navigation
events), the developer can implement such a change simply
by updating the Prefetcher component, without impacting the
other components of NAPPA.

The URL map is a lightweight hashmap storing a set
of key-value pairs. For each entry of the map, the key and
value parts contain the URL and corresponding payload of
the prefetched resource, respectively. The URL map is cleared
every time the app goes in background or is killed in order
to have a relatively low number of entries in the map and to
keep only fresh data in the prefetched resources.

The Network interceptor has three main responsibilities:
(i) to log all outgoing HTTP requests of the app at run-
time, (ii) to update the ENG according to the logged HTTP
requests, and (iii) to serve prefetched resources as soon as
one of the outgoing requests made by the app matches an
entry in the URL map. Logging HTTP requests is necessary
in order to update the list of the performed network requests
during the current activity in the ENG; this information will
be used by the prefetching algorithm for identifying new
mappings between some intent’s extra field and dynamic URL
fragments requested by the app. Technically, NAPPA exploits
the interceptors mechanism of OkHttp, which allows us to add
our network interceptor as last element of a potentially not-
empty chain of already existing interceptors. This makes our
prefetching mechanism totally transparent to the developer in
terms of effort, and unintrusive with respect to the business
logic of the app.

IV. WHAT’S NEXT

We developed a first prototype5 of the proposed technique
in order to assess its feasibility. The prototype allows develop-
ers to automatically perform all the steps of the development-
time phase (see Section III-A) via a dedicated IntelliJ plugin.
The network interceptor component has been implemented as
an Android library and it is based on OkHttp. The prototype
also covers the run-time phase of the NAPPA, where a dedi-
cated Android library realizes all the components discussed in
Section III-B. Persistence is implemented by using the Room
Persistence Library6 and the SQLite Android native driver.

In the short term we are designing and conducting a series
of experiments for thoroughly evaluating NAPPA. The first
experiment aims at assessing the accuracy of NAPPA in
identifying reachable activities within the dynamically-built
ENG. We chose to evaluate the reachable activities in the
ENG since the ENG is the core of the whole approach and
failing to build an accurate ENG at run-time may potentially
result in a high number of unused prefetched resources (false
positives) or missed prefetching opportunities (false negatives).
Preliminary results involving 10 3rd-party apps reveal that

NAPPA is able to accurately detect navigation traces among
activities w.r.t. the results of Gator [11], the state-of-the-art
approach for building window transition graphs (i.e., models
of Android apps similar to our ENG). Moreover, in a second
experiment we will assess the latency reduction Android apps
can exhibit when adopting NAPPA. This experiment will be
performed on a large scale and will involve the execution and

5https://github.com/S2-group/NAPPA
6https://developer.android.com/topic/libraries/architecture/room

https://github.com/S2-group/NAPPA

measurement of real Android apps mined from the Google
Play store. Currently, we are investigating on how to build
a dataset of interaction traces of real users of Android apps,
so to be able to realistically evaluate the latency reduction
introduced by NAPPA. Finally, we are planning to perform a
third experiment for assessing the overhead of NAPPA at run-
time in terms of both performance and energy consumption.

In the long term we are planning to design and develop
different variations of the prefetching algorithm, each of
them following different strategies. For example, we will for-
mulate prefetching as a variation of state reachability analysis
with probabilities and exploit model checking at run-time for
its resolution; we will map the ENG to different variations of
Markov chains with probabilities; we will formulate prefetch-
ing as a graph-based combinatorial optimization problem and
solve it analytically, etc. We will design and conduct large-
scale experiments on the accuracy of each of the above
mentioned variations involving real apps from the Google Play
store and (possibly) reusing already existing benchmarks [4].
Also, the experiments will target the different advantages and
disadvantages brought by each variation, e.g., its performance
at run-time, the resources it will consume, and its impact on
the overall quality of the mobile app in terms of performance,
user experience, and energy consumption.

V. RELATED WORK

To the best of our knowledge, Bouquet [12] and
PALOMA [4] are the first approaches proposed in the literature
to prefetch network requests of Android Apps. Bouquet applies
program analysis techniques to bundle HTTP requests in
order to reduce energy consumption in mobile apps. The
approach detects Sequential HTTP Requests Sessions (SHRS),
in which the generation of the first request implies that the
following requests will also be made, and then bundles the
requests together to save energy. This can be considered a
form of prefetching. This work, however, does not address
inter-callback analysis and the SHRS are always in the same
callback. Therefore, the prefetching only happens a few state-
ments ahead (within milliseconds most of the time) and has
no tangible effect on app execution time.

PALOMA is the first technique to apply program analysis
to address what and when to prefetch certain HTTP requests
in mobile apps in order to reduce user-perceived latency. With
respect to PALOMA, our technique acts at development time
and at run-time in order to address when and what network re-
sources can be prefetched considering users’ navigation within
the app, how users interaction patterns change potentially
avoiding to unhandled control/data-flow paths. PALOMA does
not consider neither the user navigation through the app nor
the history of past requests.

VI. CONCLUSIONS

In this paper we presented a new technique for navigation-
aware and personalized prefetching of network requests in
Android apps. The proposed technique works at a higher
level of abstraction with respect to state-of-the-art approaches

(e.g., callback-based prefetching) and focusses on the so-called
navigation graph of the app.

It is important to note that the same principles of NAPPA
can be applied to other mobile platforms (e.g., iOS), provided
that it is possible to (i) build accurate ENGs at run-time and (ii)
intercept and prefetch network requests independently from
the business logic of the apps.

Finally, focussing on the navigation graph opens for a new
family of prefetching opportunities. Firstly, the navigation
graph can act as internal model for run-time prefetching
algorithms, which now can look ahead several steps into
the future network resources which will be requested by the
app. Secondly, it allows us and other researchers to develop
prefetching algorithms which take into account the unique
and user-specific navigation patterns exhibited by each user,
potentially reaching better results in terms of hit rate w.r.t. the
one-size-fits-all prefetching approaches existing today.

ACKNOWLEDGMENT

The authors acknowledge Raffaele Roberto Laricchia and
Francesco Bevilacqua - students of Polytechnic University of
Bari - for the implementation of the NAPPA prototype.

REFERENCES

[1] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. Real chal-
lenges in mobile app development. In Empirical Software Engineering
and Measurement, 2013 ACM/IEEE International Symposium on, pages
15–24. IEEE, 2013.

[2] Yixue Zhao, Paul Wat, Marcelo Schmitt Laser, and Nenad Medvidović.
Empirically assessing opportunities for prefetching and caching in
mobile apps. 2018.

[3] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan,
Ian Obermiller, and Shahin Shayandeh. Appinsight: Mobile app perfor-
mance monitoring in the wild. In OSDI, volume 12, pages 107–120,
2012.

[4] Yixue Zhao, Marcelo Schmitt Laser, Yingjun Lyu, and Nenad Medvi-
dovic. Leveraging program analysis to reduce user-perceived latency in
mobile applications. In Internat. Conf. on Software Engineering, 2018.

[5] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon.
Static analysis of android apps: A systematic literature review. Infor-
mation and Software Technology, 88:67–95, 2017.

[6] Android Application Fundamentals, 2018. Available at https://developer.
android.com/guide/components/fundamentals.

[7] Android Intents and Intent Filters, 2018. Available at https://developer.
android.com/guide/components/intents-filters.

[8] Android connectivity, 2018. Available at https://developer.android.com/
training/basics/network-ops/connecting.

[9] Yun Ma, Xuanzhe Liu, Yi Liu, Yunxin Liu, and Gang Huang. A tale
of two fashions: An empirical study on the performance of native apps
and web apps on android. IEEE Transactions on Mobile Computing,
17(5):990–1003, 2018.

[10] Leanid Vovk. How to choose an Android HTTP Library,
2018. Available at https://appdevelopermagazine.com/5265/2017/6/5/
how-to-choose-an-android-http-library.

[11] Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar
Swaminathan, Dacong Yan, and Atanas Rountev. Static window transi-
tion graphs for android. Automated Software Engineering, Jun 2018.

[12] Ding Li, Yingjun Lyu, Jiaping Gui, and William GJ Halfond. Automated
energy optimization of http requests for mobile applications. In Proceed-
ings of the 38th international conference on software engineering, pages
249–260. ACM, 2016.

https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/training/basics/network-ops/connecting
https://developer.android.com/training/basics/network-ops/connecting
https://appdevelopermagazine.com/5265/2017/6/5/how-to-choose-an-android-http-library
https://appdevelopermagazine.com/5265/2017/6/5/how-to-choose-an-android-http-library

