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ABSTRACT
Despite the flourishing of languages to describe software architec-
tures, existing Architecture Description Languages (ADLs) are still
far away from what it is actually needed. In fact, while they support
a traditional perception of a Software Architecture (SA) as a set of
constituting elements (such as components, connectors and inter-
faces), they mostly fail to capture multiple stakeholders concerns
and their design decisions that represent a broader view of SA be-
ing accepted today. Next generation ADLs must cope with various
and ever evolving stakeholder concerns by employing semantic ex-
tension mechanisms.

In this paper we present a framework, called BYADL – Build
Your ADL, for developing a new generation of ADLs. BYADL ex-
ploits model-driven techniques that provide the needed technolo-
gies to allow a software architect, starting from existing ADLs, to
define its own new generation ADL by: i) adding domain speci-
ficities, new architectural views, or analysis aspects, ii) integrat-
ing ADLs with development processes and methodologies, and iii)
customizing ADLs by fine tuning them. The framework is put in
practice in different scenarios showing the incremental extension
and customization of the Darwin ADL.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Domain-
specific architectures; D.2.11 [Software Engineering]: Software
Architectures; D.2.10 [Software Engineering]: Design;
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Design, Modeling.

Keywords
Software Architecture, ADL, model driven, metamodeling.

1. INTRODUCTION
Early Architecture Description Languages (ADLs) [25], proposed

during the 1990s, had the main purpose to design an “ideal” ADL [15]
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enabling the specification of any feature and element constituting
a software architecture. These languages enabled the specification
of components, connectors and their overall interconnection [28,
15], as well as composition, abstraction, reusability, configuration,
heterogeneity, and analysis [32]. Medvidović and Taylor in [25]
tried to define the requirements an ADL shall satisfy. Then ADLs
evolved into a new generation of notations, each one dealing with
more specific features [29, 8], such as configuration management,
distribution, and product line modeling support.

A broader view of SA is being accepted today, which goes far
beyond the traditional perception of an SA as a set of constituting
elements and looks at multiple stakeholders concerns and their de-
sign decisions [24, 16, 20, 34, 23]. Based on this broader view of
SA, what is evident nowadays is that an ideal and general purpose
ADL cannot exist, and architectural languages must be extensible
so to be defined by stakeholder’s concerns. Building on the conclu-
sions of [24, 16], the main emergent requirements of future (next
generation) architecture modeling approaches are:
R1. Domain specific concerns: suitable mechanisms are required
to allow software architects to specialize general architecture ele-
ments to a particular domain by adding new elements and leaving
out unnecessary details and constructs;
R2. Multiple views: multiple views are required to keep the soft-
ware architecture description cognitively manageable, each view
represents a subset of the modeled concerns while hides the others;
R3. Analysis features: assuring as early as possible the correctness
of an SA is fundamental in order to produce quality software [27].
Typically each analysis technique requires analysis-specific nota-
tions that should be part of the selected ADL;
R4. Interoperability with other ADLs: often a single ADL can pro-
vide features that (only) partially satisfy the stakeholders needs:
future ADLs should be able to interoperate so to globally satisfy
all the stakeholders needs [23]. Sometimes could be preferable
(also for legacy purposes) to keep separated some features instead
of concentrating everything in only one notation;
R5. Promote architecture-centric development: SAs should be
used as a high-level design blueprint of the system to be used dur-
ing system development and later on for maintenance and reuse.
Therefore, ADLs should be integrated into development processes
that consider also requirements, implementation, maintenance, etc;
R6. Tool support: as stated in [24], “tools are as important as nota-
tions". Tools should support several features, as editing, visualiza-
tion, extensions creation, interoperability, and analysis.

Extensible and domain- and style-specific ADLs have been pro-
posed to cope with those emerging requirements: Acme [14],
ADML [18], and xADL [7] are first attempts of extensible ADLs
that can be adapted to new and evolving concerns but, as pointed
out in [24, 23] and analyzed in Section 2, they do not address many



challenges of next generation ADLs and they do not deal with se-
mantic aspects of extensions in a satisfactory manner.

In this paper we present a framework, called BYADL (staying for
Build Your ADL), for developing next generation ADLs according
to the requirements listed above. We exploit model-driven tech-
nologies and tools which are more powerful with respect to tech-
niques used in the past, such as normal programming languages
or XSLT that may suffer from code maintainability and scalabil-
ity issues [6]. In BYADL, the specification of an ADL mainly
consists of a metamodel whose semantics is given in terms of the
DUALLY [23] semantic core. In particular, BYADL is fully in-
tegrated and built on top of DUALLY, a framework that provides
ADLs and tools interoperability. Moreover, BYADL provides com-
position mechanisms (presented in Section 4.1) enabling a software
architect to create its own ADL by customizing or extending exis-
tent ADLs. In BYADL interoperability and extensibility mecha-
nisms coexist since we believe that it is not practical to put every-
thing in one architectural language: once the new ADL has been
built by using BYADL, it can interoperate with all the other nota-
tions that are already in the DUALLY environment. For this reason
we do not promote, even though this could be technically possi-
ble, the composition and merging of two different ADLs. Con-
trariwise, with BYADL, an existing ADL can be extended with (i)
domain specific concerns, (ii) analysis notations, (iii) new archi-
tectural views, and (iv) methodologies and processes that support
other life-cycle activities. Furthermore, BYADL allows software
architects to cut-off part of an ADL definition and to tune it by
adding references and so on. ADL-specific tools are build on top
of BYADL that enables functionalities like visualization, consis-
tency checking, and multi-view handling of architectural descrip-
tions. BYADL is implemented as Eclipse plugins that can be inte-
grated with other technologies available in the Eclipse community.

Summarizing, the contributions of this paper are: i) the analy-
sis and definition of what a new generation of ADLs should have,
ii) an incremental approach to build customized and customizable
ADLs via a set of well formalized metamodel composition oper-
ators, iii) a tool that automates the approach of BYADL, iv) the
integration of architecture descriptions with software development
processes and methodologies, v) some evidence on the applicabil-
ity of BYADL on the field.

The paper is organized as follows. Section 2 provides an analy-
sis of existing towards-next generation ADLs. Section 3 provides
background information of DUALLY as required to understand the
description of BYADL and introduces an illustrative example that is
used throughout the paper. Section 4 describes the BYADL frame-
work which is applied in different scenarios showing the extension
and customization of the Darwin ADL [22]. Section 5 summarizes
the illustrative example and opens a discussion about advantages
and limitations of BYADL. Section 6 concludes this paper and out-
lines future work directions.

2. INITIAL EFFORTS IN THE DIRECTION
OF NEW GENERATION ADLS

Some initial effort has been done in the direction of a new gen-
eration ADL through the definition of extensible and domain- and
style-specific ADLs [12, 7, 14, 18, 26].

Acme [14] is famed for being one of the very first technologies
to tackle the problem of interchange in ADLs. Acme was born as
a simple, multi-style ADL framework also providing foundations
and mechanisms to extend itself. More precisely, Acme provides
tooling extension points introduced to allow other tools to physi-
cally read and write Acme descriptions while its semantics can be

extended by means of properties that can decorate each element.
These properties are uninterpreted and it is up to user-written tools
to properly parse and use them. Therefore, the most challenging as-
pects of the extension, i.e., the semantic extension, is not properly
supported. Similar description can be provided for ADML [18] that
is an XML-based language derived by Acme. The main addition
with respect to Acme is the possibility to add meta-properties, i.e.,
a mechanism to define properties and property types of particular
elements. The extensibility mechanism is the same of Acme.

xADL [7] as well as its core xArch, are based on XML and thus
fully extendable [8]. However, XML schemas do not provide fa-
cilities to define the semantics of individual elements but only the
syntax. The semantics is fundamental in order to define a com-
mon and well defined means to interpret the syntactic concepts. In
xADL the semantics can be encoded into comments in the XML
schemas themselves, in a project documentation, in visualization
tools that stakeholders use or, finally, in analysis tools associated to
a given feature [24].

UML 2.0 [26] has been used for modeling architectures and dif-
ferent profiles have been proposed. Even thought UML is a rich
language composed of 13 different diagrams, they are not enough
for modeling every possible architectural concern. While extension
mechanisms of UML allow software architect to define stereotypes
and tagged values, which can be used to extend UML elements
to better capture domain specificities, these mechanisms cannot be
used to define new diagrams. These extensions cannot fully rep-
resent all concepts of every ADL and on the other side, as already
claimed in [25, 24], it is impractical to have a “universal” notation.

AADL [12] was born as an avionics focused Domain Specific
Language (DSL) and later on has been revised in order to represent
and support embedded real-time systems. AADL was designed as
an extensible language supporting modeling from multiple aspects
and viewpoints. The extension mechanisms of AADL include the
definition of custom properties to specify additional ADL-specific
analysis and/or generic information to be attached on the architec-
tural design. The extensibility mechanisms defined through con-
structs such as the standard “annex” plus the mentioned property
set extensions are closely related to our view of “semantic” en-
hancement, which we consider very important in any technology.
Unfortunately, AADL does not provide automated support to its
extensibility possibilities.

All these attempts to create extensible and domain- and style-
specific ADLs do not sufficiently take into account the problem of
reusing already defined extensions. In particular each extension is
coupled and specifically defined for the particular ADL and cannot
be reused for extending other ADLs.

Even though out of the scope of software architectures, in [11]
the XTEAM framework has been proposed for creating Domain
Specific Development Infrastructures (DSDIs). In XTEAM, meta-
model composition is the initial step for creating modeling infras-
tructures. Metamodels are linked to a proposed metamodeling lan-
guage (called ACT) in order to establish their semantics. The ap-
proach has been implemented within the GME environment1 which
gives the possibility to have an unrestricted number of levels in the
modeling architecture. In fact, ACT is defined as a metamodel-
ing language in terms of another metamodeling language. This as-
pect locks the specified ACT models with GME, since other tech-
nologies like EMF2, or MOF3 do not give the possibility to define

1GME - Generic Modeling Environment: http://www.isis.
vanderbilt.edu/projects/gme
2Eclipse Modeling Framework (EMF) project Web site: http://
www.eclipse.org/emf
3OMG MetaObject Facility (MOF): http://www.omg.org/mof



other metamodeling languages prior the definition of metamodels.
XTEAM promotes domain-specific analysis through the use of ex-
tensible Model Interpreter Frameworks (MIFs) that transform the
composed metamodel to analysis-specific notations. However this
is done programmatically and not through a dedicated architectural
interoperability framework.

Summarizing, the major limitations of these approaches with re-
spect to the six requirements highlighted in the introduction are:
1. These approaches propose extension mechanisms that only par-
tially satisfy requirements R1, R2, and R3. For instance, as de-
scribed before, Acme supports the extension of its semantics only
by means of properties that cannot be easily interpreted by tools.
The lack of semantics can lead to misunderstanding and specifi-
cally, as described in [11], the lack of semantics within metamod-
eling languages can lead also to several practical problems: i) im-
precise determination of semantic relationships between the ADL
and the elements that must be integrated within the ADL, ii) oner-
ous manual composition of metamodels, and iii) lack of rigorous
and automated validation mechanisms;
2. Requirement R4 is not addressed properly by any language.
Acme provided some initial ideas and more mature results can be
found in the DUALLY approach [23];
3. Concrete and scalable solutions for R5 are missing;
4. Mature tools supporting the features described by requirement
R6 are missing.

A comprehensive discussion on how BYADL satisfies the R1-R6
requirements will be provided in Section 5.

3. BACKGROUND

3.1 DUALLY

DUALLY [23] is a tool-supported framework to create interop-
erability among different architectural languages. Given a number
of architectural languages and tools, DUALLY allows interoper-
ability among them through automated model transformation tech-
niques. Any transformation among ADLs is defined in DUALLY
by passing through A0, a core set of architectural concepts. There-
fore, A0 provides the infrastructure upon which to construct se-
mantic relationships among different ADLs. In other words, it acts
as a bridge among the different architectural languages to be re-
lated together. A0 has been defined as general as possible to en-
sure that DUALLY is able to potentially represent and support any
kind of architectural representation (i.e., formal ADLs or UML-
based languages). The selection of the elements within A0 has
been performed by studying existing architectural languages and
UML. The authors exploited and inherited features they judged
satisfactory, overcoming identified limitations (e.g., xArch is ex-
tensible but makes use of XML, UML is very expressive but is
ambiguous, etc.). The main elements of A0 are Architecture,
i.e., a collection of components (SAcomponent) and connectors
(SAconnector) instantiated in a configuration, SAinterface
which specifies the interaction point between an SAcomponent
or an SAconnector and its environment, SAtypes to define ar-
chitectural types, its specialization SAstructuredType which
can contain also a definition of sub-architectures, and so on. We
refer to [23] for further details about A0 and its metamodel.

3.2 Illustrative example
This section introduces an illustrative example that will be used

as running example during the description of each aspect of BYADL.
This example is organized in three scenarios that permit to cover the
features required by a new generation ADL:
• Extending ADLs with Domain Specific & Analysis concerns or

with additional views: in this scenario the idea is to extend a given
ADL with domain specificities, analysis notations, or additional
views. The result of the extension is an extended ADL. We col-
lected these three challenges in one scenario which covers the re-
quirements R1, R2, and R3;
• ADL & Development process: in this scenario the idea is to cre-
ate interoperability among the ADL and a development process in
order to show how BYADL promotes architecture-centric develop-
ment. This scenario covers the requirement R5;
• ADL customization: the macro-requirement of satisfying stake-
holders concerns sometimes requires to leave out unnecessary con-
cepts or to add specific constructs. This scenario is devoted to this
objective and is orthogonal to the analyzed requirements.

These scenarios are applied incrementally. They do not take into
account the R4 requirement that is natively supported via DUALLY
while the R6 requirement will be discussed in Section 4.3.

Let us suppose now that our company has invested time and ef-
fort for acquiring the required knowledge and experience on the
Darwin ADL [22], and would like to use such an ADL as much
extensively as possible. Let us assume that we have to model a
fault-tolerant system where it is extremely important to explicitly
model (i) connectors, (ii) both normal and exceptional behaviors,
and (iii) the development strategies related to the SA. Unfortu-
nately, all those features are not supported by Darwin. The first
step is to consider the Darwin ADL [22] as the staging point for
the composition. Now we cover all the concerns of the current
system being developed (e.g., fault tolerance, direct link to the de-
velopment process, and so on) by instantiating the three scenarios
introduced at the beginning of this section.
DarwinFT: Extending Darwin with Fault Tolerance. In order to
generate DarwinFT we compose the Darwin ADL with the Ideal-
Component UML profile presented in [9] for specifying software
components according to the idealized fault tolerant component
model [13]. Each ideal component is composed of both normal and
exceptional parts and exceptions can either be signaled or handled
through specific interfaces.
DarwinFT+BPMN: DarwinFT & Development process in BPMN.
In this scenario, we show how DarwinFT can be composed with
the BPMN metamodel4. Upon doing so, software architects can
associate structural parts of the system to specific development ac-
tivities. The design/development process is directly linked to its
business context, including development strategies, costs, risks, etc.
(DarwinFT+BPMN)cc: Darwin customization. We customize the
DarwinFT+BPMN language by adding software connectors as first-
class elements. Components may communicate also through con-
nectors now and connectors have associated portals that act as ar-
chitectural roles.

4. THE FRAMEWORK
BYADL provides software architects with extensibility features

to build, starting from an existing ADL, their own ideal ADL. It is
important to note that extending an ADL does not mean to compose
and merge two different ADLs. Even though this could be techni-
cally possible this could lead to the creation of a “chaotic” and
“vague” language. Therefore, BYADL supports the extension of an
existing ADL with domain specificities, architectural views, and
analysis aspects. Furthermore, BYADL supports also the integra-
tion of the selected ADL with development processes and method-
ologies. The high-level design of BYADL is described in Figure 1.
An ADL can be considered a DSL specialized in the domain of
software architectures, so it is essentially composed of (i) abstract

4BPMN specification: http://www.bpmn.org/



Figure 1: The high-level design of BYADL

syntax, i.e., the set of language concepts and their relationships,
(ii) a set of concrete syntaxes, i.e., textual and graphical notations
to visualize and edit the models, and (iii) semantics describing the
meaning of the language’s constructs [31]. The abstract syntax
of the ADL is represented in terms of the metamodel obtained by
means of the composition mechanisms shown in Figure 1 part c
and explained in Section 4.1. The metamodels representing the ex-
tensions are stored in a repository of metamodels for further uses
(Figure 1 part e). For each ADL different concrete syntaxes can be
specified and their definition is managed by the “Visualization and
editor creators” component in Figure 1 part a; Section 4.3 will go
into the details on how BYADL supports it.

The semantics of the new ADL is provided by means of DUALLY
(Figure 1 parts b and f ). More precisely, this is realized through
A0, the semantic core of DUALLY that is, as explained in Sec-
tion 3.1, a centralized set of elements with respect to which rela-
tionships must be defined. Once a software architect provides re-
lationships between elements of a metamodel and elements of A0,
the elements of the ADL implicitly inherit the built-in semantics
of A0. Note that this way of providing semantics is (conceptually)
the same proposed in [31] in which the semantics of DSLs, called
translational semantics, is provided by means of model-to-model
transformations from the DSL to another language. In our case the
target language is A0. For this reason we oblige the software ar-
chitect to define these semantic relationships between the ADL to
be extended and A0, and between the metamodel that represents
the extension and A0 as a pre-requisite to operate with BYADL.
Then, for each element of the ADL and of the metamodel that rep-
resents the extension, the software architect selects, through the
graphical interface of BYADL, the most appropriate metaclass of
A0. The result is that each element of the ADL has one and only
one type-of [11] relationship with an element of A0. For instance,
referring to the metamodel of Darwin shown in Figure 4 and to the
background of DUALLY, the Darwin ComponentInstance is
typed SAComponent, the Darwin ComponentDeclaration
is typed SAStructuredType, and the Darwin Portal is typed
SAInterface, and so on. In the next sections we will discuss
the importance of the semantic links to A0 by describing how the
semantic links help designers during the composition phase and im-
prove the quality of the concrete syntaxes of the composed ADLs.

Finally, as shown in Figure 1, BYADL is integrated into the
Eclipse platform and inherits from DUALLY also architectural lan-
guages and tools interoperability. Given any number of architec-
tural languages and tools, they can all interoperate thanks to auto-
mated model transformation techniques provided by DUALLY.

The Migrators building block of BYADL (see Figure 1 part d)
automatically generates (for each composed ADL) model transfor-
mations able to reflect the architectural models defined within the
newly created ADL, back to the original tools and notations. In
this way, compatibility with previous editing and analysis tools is
guaranteed (see Section 4.2).

Figure 2 provides an overview of the composition mechanisms
and of the model migrators. The whole BYADL framework relies
on the Atlas Model Management Architecture (AMMA) [3]. We

Figure 2: a) Composition mechanism; b) Model migrators

chose AMMA since it best fits to our technical needs, like meta-
model independence, high flexibility of the composition behav-
ior, integration to Eclipse and its modeling facilities [2] [17]. The
technology we use for metamodel composition is the Atlas Model
Weaver (AMW) [19]. It allows the definition of correspondences
among (meta)models and links among model elements. Such links
are captured by weaving models conforming to an extensible weav-
ing metamodel. Model transformations are specified using the At-
las Transformation Language (ATL) [19], an hybrid model transfor-
mation language with declarative and imperative constructs. Both
models and metamodels are expressed via Ecore, the metamodeling
language of EMF, and serialized into XMI files.

The composition mechanism (Figure 2.a) relies on the Compo-
sition weaving model; it conforms to the Composition Me-
tamodel which specifies the types and structure of the BYADL
composition operators. This metamodel is given in KM3 (Ker-
nel MetaMetaModel)5, a domain specific language for specifying
metamodels. The composition model allows the composition of
two metamodels, (leftMM and rightMM in figure) into a meta-
model composedMM by executing the Composition2Ecore trans-
formation. This transformation takes as input leftMM, rightMM,
and the Composition Model and produces composedMM by
executing the semantics of the applied operators.

An overview of the migrators infrastructure is reported in Fig-
ure 2.b. More precisely, starting from the metamodels to be com-
posed (i.e., leftMM and rightMM) and the specification of their
composition (i.e., Composition Model), two transformations
are automatically generated: Composed2SingleMigrator and Sin-
gle2ComposedMigrator. The former is able to generate two mod-
els conforming to leftMM and rightMM from a model conform-
ing to the composed metamodel. On the other way round, the
Single2ComposedMigrator transformation generates a model con-
forming to the composed metamodel, starting from models con-
forming to the single ones. Such transformations are automatically
generated by means of the execution of two Higher-Order Trans-
formations (HOT): Composed2SingleMigrator Generator and Sin-
gle2ComposedMigrator Generator which are also defined in ATL.
The BYADL migrators engine is fully metamodel-independent be-
cause the HOTs are generic, i.e., they do not depend neither on the
composed metamodel nor on the single ones. Section 4.2 details
the migrators engine.

BYADL is able to deal also with UML profiles. More precisely,
BYADL reuses the DUALLY mechanism for importing a UML
profile [23] by considering them as Ecore metamodels.

5KM3 Web page: http://www.eclipse.org/gmt/am3/



Figure 3: Definition of BYADL metamodel composition operators

4.1 Composition mechanisms
Within the BYADL framework, metamodel composition is the

means by which the software architect creates an architectural lan-
guage. This task is performed by applying specific composition
operators to metamodels extracted from the Metamodels Reposi-
tory. The BYADL operators, namely Match, Inherit, Reference,
and Expand, have been defined building on those presented in [9,
33]. In particular, we made the operators proposed in [9] applica-
ble on Ecore metamodels and we refined those introduced in [33]
in order to lighten the composition process. For example, the dele-
tion of elements is implicitly performed in BYADL by a slicing
algorithm. Our approach is somehow parallel to that proposed by
Ledeczi et al. [21]: in that approach the structure of the metamodels
to compose cannot change (so that original models are still valid).
BYADL’s migrators permit to relax this constraint, providing more
flexibility while designing and applying the composition operators.
Aside from the composition operators, the BYADL conflict resolu-
tion mechanism is based on the work presented in [30].

The BYADL composition operators are defined in terms of the
weaving metamodel reported in Figure 3. The Composition meta-
class represents the root of each composition model. It references
the metamodels to compose (i.e., leftMM and rightMM) and
contains a set of operator applications (op in Figure 3) which can be
given in any order without changing the result. The mergeNames-
paces attribute specifies if the composition will preserve the pack-
ages structure of the metamodels to compose or if the composed
metamodel will contain a single root package.

The default behavior of the composition is to consider the union
of all the metaclasses in both leftMM and rightMM and to in-
terrelate them by applying the specific operators. Such behavior
may vary depending on the sliceLeft or sliceRight attributes. If
sliceLeft is true, then only the portion of the left metamodel in-
volved in some operator application will be part of the composed
metamodel. The same mechanism holds for sliceRight. The rele-
vant portion of metamodel is computed by executing a slicing pro-
cedure before calculating the union of the metaclasses in leftMM
and rightMM. This slicing procedure is based on a slicing algo-
rithm for UML models [1]. Let MM be a metamodel and let SC
be a subset of the elements in MM ; slice is defined as follows:

slice(SC) = SC ∪
⋃

c∈SC

slice(neighbour(c))

where neighbour(c) is the set of all superclasses of c, of all classes
referred (both with association and aggregation) by c, and of all
types of attributes in c. It is important to note that even though
slice is defined as a set of classes, since each class contains also
references to other classes, the final result is a part of the metamodel
MM with both classes and their relationships.

In PreferenceElement, the optional preferred attribute is used to
solve conflicts during composition: if the composition engine has
to make an arbitrary choice, then it chooses the option specified by
the preferred element. If preferred is defined both in Composition
and in an operator, then the operator’s preferred “overrides” the
one of Composition. Each operator is always applied on two meta-
classes that we refer to as source (s) and target (t) in the remainder
of this section. The composition operators of BYADL are:

Match. s and t semantically overlap and then they are merged
into a single metaclass c in composedMM. c contains the union
of all the structural features (i.e., both attributes and references) of
s and t. The features referenced by the ignoring aggregation are
discarded. The merging reference specifies if two features must be
merged before calculating the union of the features of s and t. This
is necessary in case two features are semantically the same, but they
are syntactically different. The supertypes and subtypes references
are merged. The className optional attribute represents the name
of the merged metaclass. If this attribute is not specified, then the
preferred metaclass’s name is chosen, otherwise the name will be
the concatenation of the names of s and t (the latter case is signalled
to the user with a warning). The namespace attribute specifies the
package that will contain the c metaclass. If it is not set, then the
root package of composedMM is chosen. This operator is subject
to semantic checks (and corresponding solving mechanisms) that
handle possible conflicts between properties of s and t. For exam-
ple, if both metaclasses are abstract then the resulting metaclass c
is abstract, otherwise it is not abstract. The same mechanism holds
for the interface property.

Inherit. This operator specifies that s will be a subtype of t in
the resulting composed metamodel. If its application results in a
cycle in the inheritance tree, then it is not executed and a warning
is raised. The abstractTarget attribute specifies if the t metaclass
will be abstract (then it cannot be instantiated) in the composed
metamodel. If the exclusive attribute evaluates to true, then the
metaclass corresponding to s in composedMM will extend only t,
discarding all its previous inheritances in its original metamodel.

Reference. In the composed metamodel s references t. All fea-
tures of the new reference (e.g., lowerbound, name, opposite) can
be set while applying this operator. If the new reference ref over-
laps an existing one, then it replaces the old one. The oppositeRef
feature is used to set the opposite of ref to the result of another
application of the Reference operator.

Expand. The attributes of s (leaving out the attributes specified
in the ignoring aggregation) are copied into t. The standard merge
operation is executed to manage attributes with the same name. If
the deep attribute is true, then all attributes of s (including the in-
herited ones) are recursively copied into t. The sliceSource attribute
specifies if the s metaclass is still part of the composed metamodel.



Figure 4: DarwinFT: Extending Darwin with Fault Tolerance

If this property evaluates to true, then: i) the s metaclass is deleted
from composedMM, ii) all the metaclasses extending s will extend
the direct supertypes of s, iii) all the references whose type is s are
deleted from the composed metamodel. The ignoring and merging
aggregations have the same semantics as in the Match operator.

The composition engine performs various semantic checks to
avoid incidental conflicts, such as attributes overlapping with dif-
ferent types, inheritance cycles, and so on. The composition phase
solves also discovered conflicts. The rationale that guides the so-
lution of conflicts in BYADL is to propose a combination of op-
erator’s preferred element, if specified, and to propose a default
behavior for each operator in the remaining cases. For the sake of
brevity, this work does not describe them in detail.

If structural features overlap, merging and feature equivalence
detection mechanisms have been implemented, inspired by the UML
PackageMerge algorithm [10]. Without going into the details,
the main principle is to keep consistency while trying to preserve,
as much as possible, the semantics of the metamodels to compose.

It is not infrequent that structure and semantics of a MOF meta-
model are restricted through OCL constraints. Such constraints
must be preserved since, as stated above, the composed metamodel
must embrace as much semantics as possible from the initial meta-
models. In that sense, the BYADL composition engine copies the
OCL constraints into composedMM and refines them according
to the composedMM package structure. By doing that, within
the resulting composedMM, incidental ambiguities and constraint
clashes are reduced to a minimum.

The BYADL composition engine reuses the user interface of
AMW. LeftMM and RightMM are rendered using a tree-based
editor and operators are graphically applied via a central panel.
We extended the AMW interface so that the semantic links to the
A0 metamodel guide the application of the composition operators.
More precisely, once applying an operator, BYADL proposes as
target only metaclasses that are semantically compatible with the
source metaclass. In this respect, semantics compatibility of meta-
classes depends on the type of operator being applied.

Figure 5: (DarwinFT+BPMN)cc: Darwin customization

Focusing on the illustrative example in Section 3.2, in the follow-
ing we show how the BYADL composition operators are applied in
practice. Figure 4 shows a simplified version of the first scenario,
i.e., the extension of the Darwin metamodel (introduced in [23])
with the IdealComponent UML profile (proposed in [9]). In this
scenario we use the inherit and the expand operators. Each inherit
operator has the exclusive property set to true. The inherit operator
allows the specialization of the Portal metaclass of Darwin with
HandlerInterface and RaiserInterface of the idealized
component model; they are two interfaces specialized for manag-
ing and raising exceptions, respectively. Furthermore, the inherit
operator is used to specialize a ComponentInstance of Dar-
win in NormalComponent and ExceptionComponent rep-
resenting the normal and the exceptional part of a component, re-
spectively. Finally, the expand operator is used to add the has-
Exception attribute to a ComponentDeclaration of Dar-
win. Such attribute specifies whether the component’s behavior is
specified through the normal and exception sub-components.

The second scenario deals with the integration between Dar-
winFT and the Eclipse BPMN metamodel6. It makes an exten-
sive use of the inherit operator. The main idea is to allow de-
signers to associate Darwin structural elements to BPMN activities
(e.g., tasks, sub-processes). The Artifact BPMN element has
been conceived as an extension point to provide additional infor-
mation to BPMN processes, so each DarwinFT element extends the
Artifact metaclass through the inherit operator. Due to space
limitations and to the simplicity of this composition scenario, we
do not show it graphically in this work.

Figure 5 shows the third step, namely the customization of Dar-

6http://www.eclipse.org/bpmn/



Figure 6: Composed2Single and Single2Composed migrators

winFT+BPMN performed by adding the concept of software con-
nector. This scenario makes use of the match operator with the
aim to match the ComponentInstance metaclass of Darwin
with the ComponentInstance of the softwareConnectorsMM
metamodel that we built ad-hoc. The result is a unique metamodel
in which ConnectorInstance specializes ComponentIn-
stance, and ConnectorDeclaration specializes Compo-
nentDeclaration. It should be noted that the OCL constraint
will also be part of the final composed metamodel; this avoids hav-
ing connector instances declared as components and vice versa.

4.2 Model migrators
As said in the previous section, BYADL provides software archi-

tects with the means to create customized ADLs by extending ex-
isting ones. However, in this scenario it is important that tools sup-
porting original ADLs can still be used to manipulate and analyze
models which have been created by means of the new composed
ADLs. In order to cope with such situations, BYADL provides
two HOTs which are able to generate specific model migrators.
In particular, the Composed2SingleMigrator Generator reported in
Figure 2.b generates a Composed2SingleMigrator (see Figure 6.a)
starting from the metamodels being composed and the weaving
model specifying their composition. This generated transforma-
tion takes as input a model ModelC conforming to the metamodel
composedMM and generates three different models: ModelL,
ModelR, and Trace. ModelL and ModelR contain the elements
in ModelC which can be represented by means of the metamodels
leftMM and rightMM, respectively. The Trace model contains
the information which is required to compose models by means of
the generated transformation Single2ComposedMigrator described
in the rest of this section.

Listing 1: Excerpt of the Composed2SingleMigrator Generator
1... helper context ECORE!EClass def: toRuleString():

String =
2 if not self."abstract" then
3 if self.inherits() then
4 self.inheritManagementRule()
5 else
6 if self.comesFromMatch() then
7 self.matchManagementRule()
8 ...

Listing 1 reports a small fragment of the Composed2SingleMi-
grator Generator. Essentially, each metaclass in the composed
metamodel is taken into account to determine how it has been ob-
tained by the composition process. Depending on the operator
which has been used, a corresponding transformation rule is gener-
ated. For instance in case of classes obtained from a match opera-
tion, the matchManagementRule() (see lines 3-4) is executed
to generate a transformation rule which is able to decompose the
instances of the considered matched class.

Figure 8.a reports a sample model conforming to the metamodel
(DarwinFT+BPMN)cc. The model consists of a BPMN diagram

specification containing a Darwin description augmented with mod-
eling elements provided by the softwareConnectorsMM metamodel.
For example, the element NetworkType is a connector declara-
tion which can be given because of the match between the meta-
classes ComponentDeclaration in Figure 5.

The generated rule ConnectorTOComponent_Connector
reported in Listing 2 is able to decompose all the source connector
declarations (like the element NetworkType above). It generates
a component declaration in the target DarwinFT+BPMN model,
and a connector declaration in the target softwareConnectorsMM
model. Additionally, the migrator generates a trace model in order
to store the elements which have to be considered together when
the separated models have to be recomposed.

Listing 2: Excerpt of the generated Composed2SingleMigrator
1create OUT_M1 :MM1, OUT_M2 : MM2, OUT_TRACE : TRACE from

IN : MM12;
2... rule ConnectorTOComponent_Connector {
3 from s : MM12!ConnectorDeclaration
4 to t: MM1!ComponentDeclaration (
5 hasException <- s.hasException,
6 ...
7 t2: MM2!ConnectorDeclaration ()
8 do {
9 thisModule.createTraceLink(t,t2, #match);

10 }
11}

Being more precise, a trace model is another weaving model con-
sisting of trace links. Each trace link relates two model elements
which are instances of metaclasses that have been composed. Fig-
ure 7 reports a fragment of the trace model generated by applying
the Composed2SingleMigrator on the sample model in Figure 8.a.
The last trace link relates the NetworkType component declara-
tion contained in the left DarwinFT+BPMN model with a connec-
tor declaration in the right softwareConnectorsMM model. Such
model elements have been generated by applying the rule reported
in Listing 2 on the source NetworkType connector declaration.

As previously said, BYADL provides software architects with
the Single2Composed Migrator Generator depicted in Figure 6.b.
This generator produces a Single2Composed Migrator able to gen-
erate a model ModelC conforming to a composed metamodel com-
posedMM starting from ModelL conforming to leftMM, ModelR
conforming to rightMM, and a trace model obtained during a de-
composition as explained above. For instance, by applying the gen-
erated Single2Composed Migrator to the models reported in Fig-
ure 7, a (DarwinFT+BPMN)cc model is obtained. The trace links
drive this operation since they maintain the elements which con-
tribute to the generation of a same target element. For instance, a
target connector declaration named NetworkType will be generated
because of the last trace link reported in Figure 7. Without this in-
formation the migrator is not able to distinguish the model elements

Figure 7: Sample generated Trace model



which have to be composed from those which have to be simply
copied to the target model. Due to space limitation, we do not
describe the code obtained by applying the Single2Composed Mi-
grator Generator on the example, even though the interested reader
can download it from the BYADL project Web site7.

The migrators have been conceived by inheriting the work done
in [4, 5]. In general, adapting models with respect to the occur-
ring modifications in the corresponding metamodel is a challeng-
ing task. In fact there are many kinds of metamodel changes that
have to be taken into account and which can be distinguished into
non-breaking, and breaking. The former are metamodel modifi-
cations which do not brake the conformance of the existing mod-
els in contrast to the modifications which brake their conformance
and that can be in turn classified into resolvable and unresolvable.
An example of a breaking and resolvable modification is the dele-
tion of a metaclass. In this case, existing models can be automati-
cally adapted by eliminating all the instances of the deleted meta-
class. However there are modifications (breaking and unresolvable)
which require human interventions for their resolution, like the ad-
dition of an obligatory metaclass.

According to the semantics of the provided operators, and to the
metamodel difference classification available in [4], in our case
the migration of models can be automatically performed. This is
because i) breaking and unresolvable modifications do not occur
and ii) the trace models produced by any Composed2Single Migra-
tor contain the necessary information to properly select the model
elements which have to be composed by the corresponding Sin-
gle2Composed Migrator.

4.3 Visualization and editor creators
Visualization features and editors are an important and ineluctable

aspect of architecture description languages. In fact by means of
editors software architects can draw, design, view, and reason about
the software architecture of the system they are modeling. By us-
ing BYADL three different kinds of editors can be adopted, each
characterized by a distinguishing usability level and a certain effort
to be implemented. In particular, software architects can use a:
• tree-based editor: this graphical editor is obtained for free by
EMF. Similarly to the tool support of xADL [7], this editor shows
collapsible and hierarchical tree-like structures; it is very simple
and useful for large size software architectures, even though it’s
usability level is quite low. Figure 8.a shows this editor at work;
• textual editor: starting from the metamodel of the created ADL,
a textual editor conforming to the Human-Usable Textual Notation
(HUTN) specification8 can be automatically generated. HUTN is
a generic specification that provides a concrete language for any
MOF model. The produced textual editor supports also syntax
highlighting and automatic conformance check with respect to the
metamodel (i.e., the abstract syntax of the ADL). The usability
level of this editor is slightly higher than the tree-based one. In
fact, both require a deep knowledge of the metamodel even though
in many cases a textual syntax is preferred to the tree based editor.
An example of this editor is shown in Figure 8.b.
• graphical editor: software architects can also produce a graph-
ical editor with customized graphical elements. This is possible
by means of the EuGENia9 tool. This tool automatically gener-
ates the models needed to implement an editor from a single anno-
tated Ecore metamodel. EuGENia is based on the Eclipse Graphi-

7BYADL Web site: http://byadl.di.univaq.it/
8HUTN specification: http://www.omg.org/technology/
documents/formal/hutn.htm.
9EuGENia GMF Tutorial: http://sourceforge.net/apps/
mediawiki/epsilonlabs/index.php?title=EuGENia.

cal Modeling Framework (GMF)10 that provides a generative com-
ponent and runtime infrastructure for developing graphical editors.
Suitable annotations allow us to identify the different roles of the
elements (such as the root object of the metamodel) and to spec-
ify graphical properties (such as border.color, label.icon, etc.). Let
ADLnew be the new ADL we are building, let ADL1 be the ADL
we selected as ADL to be extended, and let MM be the meta-
model representing the extension. The graphical editor features
allow ADLnew to inherit graphical elements of ADL1 and MM ,
under the assumption that annotated Ecore metamodels were avail-
able for ADL1 and MM . In case of a graphical element for an
element of ADLnew exists both in ADL1 and MM , the preferred
field of the operator we are using for composing can help to disam-
biguate. Sometimes ADL1 and MM provide separated views that
should be kept separated and sometimes they should be merged.
BYADL, by means of its graphical interface, allows the software
architect to select the most suitable solution. For instance in Fig-
ure 8.c we can see that Darwin, the idealized component model and
the connector model have been integrated into a single view (white
area in the figure), while BPMN has kept its separated view (gray
area in the figure). Links between these two different views are
added by hand in Figure 8.c to graphically show existent relation-
ships among elements of these views.

Furthermore, semantic links specified among ADL1 and A0 and
among the MM and A0 enable the possibility to inherit the graphi-
cal annotations (and hence the graphical representations) of the A0

linked elements. In other words, A0 substitutes ADL1 or MM
if they do not have annotated Ecore metamodels. Finally, the ob-
tained GMF editor can be polished and optimized even though this
step requires a deep knowledge of GMF. The generation of graph-
ical editors is in its prototypal version and currently it is not able
to solve subtle conflicts that the different graphical elements may
have. We better describe this point while discussing the limitations
of the approach in Section 5.2.

To summarize, there are three different possibilities in BYADL
to produce an editor for the ADL being developed. Depending on
the effort and the knowledge that the software architect wants to
invest, a textual or graphical editors can be conceived each with a
different usability level.

5. EXPERIENCE AND EVALUATION
The illustrative example introduced in Section 3.2 and used

throughout the paper is summarized in Section 5.1. Section 5.2
discusses advantages and disadvantages of the BYADL approach.

5.1 Summarizing the illustrative example
The illustrative example has been used in the entire paper to de-

scribe the main aspects and features of BYADL. In this section we
give an overview of a system which has been modeled by using
(DarwinFT+BPMN)cc, i.e., the new ADL we have constructed by
following the three scenarios presented in Section 3.2. The mod-
eled system, called Integrated Environment for Communication on
Ship (IECS) [23], is based on a specification coming from a project
developed within Selex Communications, a company mainly op-
erating in the naval communication domain. The purpose of this
model is just to show how the newly created (DarwinFT+BPMN)cc
ADL can be used in practice. Therefore, for space reasons we do
not provide further informations on the IECS system.

The integration of Darwin with BPMN allows us to model not
only the SA of IECS, but also the adopted development strategies
(see Figure 8.c). The IECS software architecture is composed of

10GMF: http://www.eclipse.org/modeling/gmf.



(a) Tree-based editor (b) Textual editor (c) Graphical editor

Figure 8: Generated default editors

the Equipment, Workstation, Proxy, DB and CTSM components.
The type of the latter one (CTSMType in figure) is defined using
the idealized fault tolerant component model integrated in Dar-
win. Network is a software connector; this is possible thanks to
the customization of Darwin we made (third scenario). As can
be seen in Figure 8.c, Darwin and BPMN are presented via two
different views. (DarwinFT+BPMN)cc enables to assign software
components of the designed SA to developer teams. In particu-
lar, let us assume to have two developer teams (namely, A and B),
a system engineering team and a testing team. The dotted lines
graphically show how Darwin components are associated to the
BPMN tasks and pools describing the activities assigned to each
team (i.e., Proxy, DB, and Network are assigned to the system en-
gineering team, Equipment and CTSM to the development team
A, and Workstation to the development team B). Even if these rela-
tionships are not graphically rendered, they exist in the IECS model
and can be accessed through the Properties panel of both graphical
editors. It should be noted that the current IECS model can be
manipulated by the original Darwin tool by applying a chain of mi-
grators generated during each step of the composition phase 4.2;
a model-to-text transformation (developed in [23]) completes the
bridge towards the Darwin tool.

5.2 Advantages and disadvantages
BYADL successfully addresses the main emerging requirements

of next generation ADLs. More precisely, the composition mech-
anism presented in Section 4.1, satisfies requirements R1, R2, and
R3 since they provide mechanisms to extend the ADL with Domain
specific concerns, with new Architectural views, and with Anal-
ysis notations, respectively. Furthermore, the proposed operators
are used also to define relationships between software architecture
and development processes and methodologies, thus addressing re-
quirement R4. The requirement R5 about interoperability is inher-
ited by DUALLY [23], and finally the extended (and even exten-
sible) ADL inherits the BYADL tool (with its textual and graphi-
cal editors, extensibility mechanisms, interoperability features, and
migrators), thus satisfying requirement R6.

Extensions in BYADL are defined in an ADL-independent man-
ner and they are collected in libraries, so to be reused for further

extensions of (even different) ADLs. It is important to highlight
that the approach promoted by BYADL is incremental, so that soft-
ware architects are able to extend and customize their ADL when-
ever required. This is particularly important in practice since often
the characteristics of “optimal” ADL (for instance as required by
the considered non-functional aspects) may change during the ar-
chitecting phase [27]. However, the proposed approach suffers of
the following limitations:
• The semantics of the ADL is defined by means of relationships
with A0. Therefore, a precise semantics cannot be expressed for el-
ements that are not in A0. For instance A0 does not explicitly han-
dle hardware devices. Consequently hardware components should
be typed as generic components. However, A0 has been defined
in [23] as extendible and DUALLY provides also extension mech-
anisms for it. In this way A0 can be extended with domain specific
concerns, thus enabling a more precise semantics for the considered
domain (i.e., A0 can be extended with hardware aspects and with
explicit hardware components). By the way we plan to investigate
more powerful and formal ways to provide semantics;
• There is no evidence that the defined operators are enough for
extending any existing ADL. New operators can be incrementally
added within the BYADL framework in a modularized way. Tech-
nically, adding a new operator means to (i) extend the Operator
metaclass in Composition Metamodel, (ii) update the Com-
position2Ecore transformation with the execution logic of the added
operator and (iii) update the BYADL HOTs in order to generate mi-
grators reflecting also the logic of the added operator;
• As said before, the generation of graphical editors is in a proto-
typical stage and it is not able to automatically solve every possible
conflict that may arise. This aspect needs further investigation. An
important aspect that should be considered is that software archi-
tects associate to graphical elements a semantics. When inheriting
a graphical element we inherit also this implicit semantics that must
conform to the one associated to the element by the tool;
• The current status of BYADL only allows the creation of new
ADLs by extending existing ones. The creation of a new ADL from
scratch is not properly supported and investigated. In this case A0

could play an interesting role by providing a minimal and generic
ADL that can be extended as needed.



6. CONCLUSION AND FUTURE WORK
In this paper we presented BYADL, a framework for developing

a new generation of ADLs. As we have shown throughout the pa-
per, the software architecture world is changing and consequently
there is the need of a new generation of architecture modeling ap-
proaches. BYADL exploits model-driven techniques and allows a
software architect to define its own new generation ADL by starting
from an existing ADL, and i) adding domain specificities, new ar-
chitectural views, or analysis aspects, ii) integrating the ADL with
development processes and methodologies, and iii) customizing the
ADL by fine tuning it. The incremental extension and customiza-
tion of a real ADL shows the use in practice of BYADL for defining
a new ADL starting from an existing one.

As next steps, we aim at addressing the limitations highlighted
in Section 5.2. We plan also to further investigate the role of the
migrators. More precisely, the challenge is to investigate how to
provide means to identify the parts of the software architecture that
are affected by changes made by native ADL tools. In fact this
enables software architects to understand if results of performed
analysis remain valid even after changes or if the analysis must be
re-performed. Moreover, we plan to work on quantifying the effec-
tiveness of our approach by applying it on real-sized case studies.
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