
A Study on the Energy Consumption and
Performance of Single-Activity Android Apps

Carolina Neves, ChiaYu Lin, Srishti Nigam, Daumantas Patapas, Ander Eguiluz, Tanjina Islam, Ivano Malavolta
Vrije Universiteit Amsterdam, The Netherlands

{c.oliveiraneves | c.y2.lin | s.nigam | d.patapas | a.eguiluz}@student.vu.nl, {t.islam | i.malavolta}@vu.nl

Abstract—Context. A new architecture for Android apps has
been recently introduced. It is called single-activity app architec-
ture and it results in Android apps with a completely different
structure and runtime behaviour when transitions among screens.
Goal. The goal of this research is to assess the impact of the
new single-activity architecture on the energy consumption, CPU
usage, and memory usage of Android apps.
Method. We developed four Android apps: two apps following the
single-activity architecture (with basic and advanced complexity)
and two apps following the traditional architecture (with basic
and advanced complexity). Then, we measure all of them in
terms of energy consumption, CPU usage, and memory usage
and statistically analyse the collected measures.
Results. Our results show a significant difference between single-
activity and multiple-activity architecture for the dataset of
Energy consumption (advanced complexity app) and Memory
usage (basic complexity app) measurements.
Conclusions. This study provides evidence that there is a signifi-
cant difference in energy consumption between the single-activity
and multiple-activity architecture on both basic and advanced
Android apps.

I. INTRODUCTION

An application’s life cycle begins with a requirement list.
It starts with having predefined functionalities that the appli-
cation will have provided by either research, by the request
of a customer, or by other means. But with the fast-paced
world that we are in, each application needs to keep up and
adapt or it will quickly become irrelevant and be exchanged for
a different one with new technology and more functionality.
With the introduction of the new functionality comes the
task of managing the application’s speed, network, stability,
reliability, etc. The mobile app experience differs from the
desktop counterpart, in that, a user’s interaction with the app
does not always begin in the same place. Instead, the journey
begins non-deterministically. For instance, if you open a social
media app such as Whatsapp, as shown in Fig. 1, you are
shown the main screen with the recent activities contrast
(on the left "Open App"), if you receive a push notification
onto your phone about an event and you click on it you
are sent directly onto that event’s page (on the right "Open
Notification").

That results in even more possible problems that a developer
must oversee as they are developing the mobile app. Consumer
opening their application expects that it will load fast, will not
drain the battery quickly, and will not make their phone over-
heat. To keep up with users’ expectations, new technologies
get introduced with ideas as to how to better manage these

issues and provide your application with the reliability the
consumer expects. That brings about the introduction of app
architectures such as multiple activities and single activities.
But to understand the similarities and differences between
both of these infrastructures it is important to first understand
the technologies that surround them. Android activity is an
application component that gives a user interface where the
interaction occurs. When one app invokes another, the calling
app invokes an activity in the other app. The activity serves
as the entry point for a mobile app’s interaction with the user.
The window typically fills the screen, but could also be smaller
than the screen and float on top of other windows.

Fig. 1: Launching VS Opening a notification on WhatsApp

Most mobile apps contain multiple screens, which means
they are comprised of multiple activities. Typically one activity
in an app is specified as the main activity which first appears
when the user launches the mobile app. Each activity after
that may start another activity to perform different actions.
As an example, the main activity is a social media application
that provides a screen that shows recent activities. From there,
the main activity might launch other activities that provide
screens for tasks such as writing a comment. Fig. 2 shows the
process of launching an activity from the main activity. On
the left is the main activity - Facebook feed - and by pressing
the "What’s on your mind?" it launches the second activity -
Create a Facebook post.

Although activities work together to form a cohesive user
experience in a mobile app, each activity is only loosely bound
to other activities and may even be start-up activities belonging
to other apps.

Fragments are the reusable components that are attached
and displayed within the activities. A fragment is a piece of
an activity that enables a more modular activity design. It
defines and manages its own layout, has its own lifecycle,

9

2023 IEEE/ACM 7th International Workshop on Green and Sustainable Software (GREENS)

979-8-3503-1238-6/23/$31.00 ©2023 IEEE
DOI 10.1109/GREENS59328.2023.00008

and can handle its own input events. Fragments cannot live
on their own and must be hosted by activity or another
fragment [1]. These introduce modularity and reusability into
the activities’ User Interface (UI) as that allows to divide it into
discrete chunks. Considering an app that responds to various
screen sizes. On larger screens, the app should display a static
navigation drawer and a list in a grid layout. On a smaller
screen, the app should display a bottom navigation bar and
a list in a linear layout. Managing all these variations in the
activity can become close to impossible. Separating the navi-
gation elements from the content can make this process more
manageable. The activity is then responsible for displaying the
correct navigation UI, while the fragment displays the list with
the proper layout.

Fig. 2: Main activity with a side activity

Dividing the UI into fragments makes it easier to modify the
activity’s appearance at run-time. When an activity is running,
fragments can be added, replaced, or removed.

Fig. 3 shows the difference between the architectures in
question. Multiple-activity architecture has multiple activities
where the data is shared using a singleton data holder and each
activity has its own fragments. Whereas in a single activity
architecture, one activity generates fragments that are shared
using a shared view model.

Fig. 3: Two architectures

The purpose of this research is to analyze the benefits and
drawbacks of having either a multiple-activity mobile applica-
tion or a single activity mobile application and evaluate which

architecture design is more beneficial in terms of Central
Processing Unit (CPU) usage, memory allocation, and energy
consumption. We will conduct a statistical analysis on the
collected data for the energy, CPU, and memory usage, from
the applications designed by us, based on the two architecture
types, single and multiple architecture, and the two complexity
types basic and advanced, explained in more details in the
upcoming sections. The research aims to benefit the developers
when choosing the app’s architecture.

II. RELATED WORK

The impact of energy consumption on single-activity mul-
tiple fragments and multiple-activity Android apps has been
given little attention. Therefore in this section, we summarize
the literature relevant to Android fragments and activities,
mentioning how they may relate to our experiment on energy
consumption, CPU usage, and memory allocation.

Yongfeng et al. [2] compared the life cycle of Android
activities and fragments. They found that the fragment’s life
cycle has an effect on data flow analysis on Android apps.
They also pointed out that the fragments could cause memory
leakage if their life cycle is not considered properly. Based
on their experiment in our study, we aim to investigate the
memory consumption of single activity multiple fragments
architecture over multiple activity architecture on Android
apps.

Jun et al. [3] developed an automatic tool LeakDAF for de-
tecting memory leakage caused by fragments on Android apps.
In contrast to their experiment, we aim to analyze whether
memory leakage from fragments has an effect when a single
activity is used compared to multiple activity architecture.

Jue Wang et al. [4] focused on optimizing and updating the
existing GreenDroid tool that diagnoses energy inefficiency
in Android apps by supporting the features of fragments. In
contrast to our experiment, the authors focused on the energy
consumption issues of Android applications with and without
fragments.

Xianfeng Li et al. [5] analyzed the reduction of redundant
rendering in Android applications. The authors shed a dim
light on the possibilities of increasing energy efficiency in GUI
rendering by changing between single and multiple-activity
architectures in specific Android applications. However, they
do not provide a general overview of the neat energy-efficiency
difference in using one architecture or the other in rendering.

III. EXPERIMENT DEFINITION

The goal of this study is to analyze mobile architecture
designs for the purpose of evaluation with respect to their
energy consumption and performance from the point of view
of a developer in the context of Android mobile applications.

Our goal is refined into the following RQ:
[RQ1] How does single activity compare to multiple-activity

in terms of energy consumption and performance? To answer
this question we will consider two apps with two levels
of complexity, basic and advanced. The different levels of
complexity will be analyzed for both architecture types. This

10

means that for each app type, there will be two versions, one
using single activity architecture and another, using multiple
activity architecture. Then we will analyze the performance
based on the CPU usage (%), memory usage (Bytes), and
energy consumption (J) of each of these applications.

We identify the following two sub-questions related to RQ1:
[RQ1.1] How does single activity compare to multiple-

activity in terms of energy consumption? To answer this
question, we consider the energy consumption in Joules of
the applications.

[RQ1.2] To what extent does single activity compare to
multiple-activity in terms of performance? To answer this
question, we consider the average CPU usage (%) and memory
usage in Bytes (B) of the applications.

IV. EXPERIMENT PLANNING

The goal of this research is to compare and contrast the
energy consumption and performance of multiple activity apps
and single activity apps. This section includes the plan for
achieving our research goal, the subjects, and variables in-
volved in the experiment, and the hypotheses defined. Finally,
the data analysis method will be described in later sections.

A. Subjects Selection
The subjects of this research are the mobile applications

used for measuring energy consumption. Before starting the
subject selection process, the research team first needed to
determine which Android mobile device to use for the subjects
to execute. According to Open Signal, the founder of the
mobile signal monitoring app, there are over 24,000 unique
Android devices as of June 2015 [6]. Since it is impossible
for us to obtain and test such a large number of devices, our
research team decided to concentrate on the devices we already
have. The experiment device that the research team used is
Google Pixel 5 with Android version 11, which is a relatively
new mobile phone released in September 2020.

Another critical decision is the selection of the subjects,
which are the Android applications that would be analyzed
during the experiment. The research team first delved into
the pre-existing apps that used single-activity and multiple-
activity architectures. However, without looking at the original
source code, it is difficult to tell which architecture this
app is based on. Second, it was impossible to find two
identical apps developed using these two different architecture
types. Therefore, the Android applications were developed
from scratch to ensure the validity of the experiment. In
total, the research team developed four apps, two basic ones,
and two advanced ones. Both the basic and advanced apps
are implemented twice, one for each type of architecture,
single and multiple-activity. The main difference between the
advanced and basic apps is the complexity of the app elements
used and the amount of data exchanged inside the app. The
basic applications consist of 4 pages the onboarding, sign-up,
sign-in, and the homepage, whereas the advanced applications
have an additional 2 pages of video selection page and the
video page. A more detailed explanation of the design and the
pages for basic and advanced apps can be found in IV-D.

B. Experimental Variables

To conduct the experiment of this project, the independent
variable is the architecture of the app, it will be one of the two
treatments: single-activity or multiple-activity architecture.

The dependent variables, in turn, are the following:
• Energy Consumption (J): The overall energy consumption

by the single/multiple-activity app architecture running in
the smartphone.

• CPU usage (%): The average CPU usage of the appli-
cation, measured in real-time while interacting with the
app.

• Memory usage (Bytes): The overall memory usage while
the app is running.

These dependent variables correspond to the research ques-
tions specified in the GQM. This can be viewed in the table
below:

C. Experimental Hypotheses

The goal of this research is to investigate the impact both
single and multiple activity architecture have on the dependent
variables described in Section IV-B. As the complexity of the
application can affect the dependent variables, we analyze the
impact of the basic and advanced apps separately.

From the experiment, we calculate population means µijk
with i ∈ {e, c, l} each of the dependent variables energy con-
sumption (e), CPU usage (c), memory usage (l) respectively,
j ∈ {b, a} each level of complexity basic (b) and advanced
(a) respectively, k ∈ {s,m} indicating single activity (s) and
multiple-activity (m) architecture respectively.

For the energy consumption variable e, it is unclear whether
the single activity architecture will perform better than the
multiple activity architecture. To this end, we execute two-
sided statistical tests on the hypothesis.

H0,ej : µejs = µejm,∀j ∈ {b, a}
Hα,ej : µejs 6= µejm,∀j ∈ {b, a}

(1)

For the performance variables c and l, we cannot assume
which architecture single or multiple-activity will perform
better. To this end, we execute two-sided statistical tests on
the hypotheses.

H0,ij : µijs = µijm,∀i ∈ {c, l},∀j ∈ {b, a}
Hα,ij : µijs 6= µijm,∀i ∈ {c, l},∀j ∈ {b, a}

(2)

D. Experiment Design

The main point of this experiment is the design of the
subjects, which are the four mobile applications used to
measure energy consumption (two advanced apps and two
basic apps). To compare, one advanced app and one basic
app were built using the multiple activity architecture, while
the other advanced app and basic app were built using the
single activity architecture. The primary difference between
advanced and basic apps is (1) the number of pages designed,
which affects the amount of data passing between the pages.
The second difference between basic and advanced apps is (2)
the complexity of app elements used. The two main design
differences would be described in this section:

11

Pages: Basic apps, Fig. 4a, contain only four pages: the
on-Boarding page, with a sign-up button that leads the user
to the Sign-Up page, the Sign-up page, where users provide
their basic information, the Sign-in page, where users input
their username and password, and lastly the Home Page,
which displays the users profile information. User information
like username, password, age, and address will be exchanged
between these four pages.

For advanced apps, Fig. 4b, six pages were designed. The
pages include an on-Boarding Page, a Sign-in Page, and a
Sign-up Page which contains more data columns such as
gender, email, and phone number for the user to fill in, along
with a location API, a Home Page which listed more user
information, a Video Selection Page where user can select one
video to view and lastly the Video Page where the videos are
played. Compared to the basic apps, more user information
will be exchanged between these six pages.

Elements: In basic apps, Fig. 4a, the pages consist of
data columns [7] for users to type in their information. In
advanced apps, Fig. 4b, except for the data columns [7],
Android Location [8] is used to track the user’s current
location. Additionally, a ListView [9] and a Video Player [10]
are utilized to display the collection of videos and play the
videos, respectively. The elements in the advanced apps are
more complex and more energy consumption comparing to
the basic ones.

The summary of the basic and advanced app is shown in
Table I. Also, a prototype for the apps is drawn in Fig. 4a and
Fig. 4b.

TABLE I: Summary of basic and advanced apps
Pages Elements

Basic

Home Page

Data ColumnsSign-in Page
Sign-up Page
On-Boarding Page

Advanced

Home Page Data Columns
Sign-in Page List
Sign-up Page Android Location API
on-Boarding Page Video Player
Video Selection Page
Video Page

During the experiment, the research team navigated through
the app pages in a fixed order to measure energy consumption.
The navigation order is also drawn in Fig. 4a and Fig. 4b.
We count a tour of page navigation as a run, since each run
only takes a little amount of time, it would be difficult to
measure the energy consumption. Therefore, the research team
performed 10 turns in a single trial. The energy consumption
may vary over the time the app has been running, for example,
the battery consumption may drop faster from 75% to 74%
than 100% to 99%. In order to increase the accuracy of the
experiment, initially we were planning to perform each trial 10
times with a 5 min resting period in between them to ensure
the phone charges back to 100% and has enough time to cool
down. However, in order to have a bigger dataset with more
data points, we decided to increase the size of the trials from
10 to 40 runs, thus reducing the waiting time from 5 to 1 min,

due to time constraints for running the complex apps multiple
times.

V. EXPERIMENT EXECUTION

The execution of our experiment is divided into several
steps. First, we prepared the subjects and the setup of the
hardware and tools required for the measurement. Then, we
collect the data, and finally we test the hypotheses and perform
the data analysis. A complete replication package is available
for verifying the results of this study1.

A. Preparation

Android applications for the research project were created
using Kotlin programming language version 1.7.0 and an
Android Studio integrated development environment. Android
Runner, in turn, is being used for collecting data related to the
dependent variables. This framework was selected because it
allows the developers to get different metrics and set up a
tailored experiment in a compact and centralized way.

With the Android application created, in order to be able to
check how it looks and behaves on a device, the application
needs to be built and run as a release app. To use the
Android Runner [11], first we set up the environment and
the dependencies, and then install the framework. Finally,
the interaction with the app will be automatized using a
Python script. MonkeyRunner [12] will be used to detect and
reproduce all the events related to button selection, navigation,
and text input. Therefore the related library for MonkeyRunner
must be downloaded and properly configured since it has been
deprecated for the latest version of Ubuntu.

B. Setup

The measurement process is managed by the Android
Runner framework [11]. To utilize Android Runner, we would
need to first make the device accessible through the ADB [13]
utility, which makes possible the connection between the
device and the laptop. Hence, we connect our Android device
to our personal computer using a USB C cable. The device will
stay connected and unmoved, and the debugging tools option
will be enabled while the device is connected to the system.
This will allow the ADB utility to identify and operate with
the Android device.

Next, we can record the required interaction to perform the
tests within the four apps with MonkeyRunner [12]. This will
generate a textual file containing the performed actions that
we will later transfer to the interaction.py file, which will
take care of performing the same actions for every run2. After
that, we prepare a configuration file describing the experiment,
which then will be used by Android Runner for executing the
actual experiment.

• Add the pertinent plugins (Android Profiler [14] and
BatteryStats [15]).

• Specify the module name of the corresponding app.

1https://github.com/S2-group/greens-2023-single-activity-android-rep-pkg
2The duration of the usage scenarios is about 20 seconds for the basic app

and about 33 seconds for the advanced one.

12

(a) Basic App Prototype
(b) Advanced App Prototype

Fig. 4: Basic App Prototype (a) vs Advanced App Prototype (b)

• The number of runs required.
• Time between runs for cooldown.
• Scripts to be run during the experiment, including the
interaction.py file, and other configuration details.

For our experiment, we prepared four different config.json
files with the corresponding interaction.py file for each app.

The BatteryStats [15] tool is used to calculate the power
consumption of the different components of the device. This
will be used to compare the consumption of energy between
single and multiple activity architectures and identify the
impact on the device’s energy consumption that corresponds
to battery drain. Memory profiling is done to evaluate if there
is an increase in memory allocation caused by memory leaks
caused by either of the architectures. While the CPU usage
is recorded to analyze how much computational power the
different apps take in comparison with each other.

By conducting research, it was found that the Android
development process may involve a Raspberry Pi, but the
requirements of the testing process are entirely different. This
is because the Pi isn’t powerful enough to run an Android
emulator, hence the whole application is built and installed
on an actual device Google Pixel 5 with Android version 11,
equipped with 8GB RAM and a 4080mAh battery for testing.

C. Measurements
At the start of each trial the phone gets connected to the

ASUS GL552V laptop (Ubuntu Linux), equipped with an Intel
i5 6300HQ CPU and 8GB of RAM, and battery protection
is enabled to avoid it from charging. In order to compare
the consumption of the apps from the same baseline, screen
brightness is set to a minimum, Wi-Fi and location are turned
on and the phone is on the "Home" screen. The connection
is tested by running the ADB devices command, which yields
the status of the desired device. If the status is correct, we
launch the trial.

The trial starts with a command pointing to the perti-
nent config.json file, which runs the built-release app on
the Android device and starts performing the pre-recorded
actions on the interaction.py file. The data is collected in
two different files, one for CPU and memory, the other for
energy consumption. After the navigation through the app is
done, the phone is set back to charging mode and a period of
1 minute is set to let the phone cool down. The data obtained
is then used for the analysis process.

D. Analysis

All statistical tests and graphical representation will be
performed using R Studio, with R version 4.2.2.

Based on the design of the experiment, we perform tests for
one factor and two treatments. The data collected for energy,
CPU, and memory needs to be analyzed. Primarily, descriptive
statistics for the data are obtained by listing the Mean, Median,
Minimum, Maximum, 1st, and 3rd Quartile values. The data is
also plotted using Box-Plots, to visualize any relevant outliers.
To remove the outliers, iris data [16] is used, and to understand
the distribution of the variables Shapiro Wilks test is used [17].
Once the analysis has been carried out, we will perform
transformation techniques to convert non-normal data to a
normal distribution, depending on the skewness values, using
the R library called moments [18]. These are further visualized
using Q-Q plots. Finally based on the result we will either
conduct the two-sided T-Test if the distribution is normal or
Mann Whitney U Test (Wilcoxon Rank Sum Test) if it is not.

VI. RESULTS

The results section is split into four parts. The first shows
the descriptive statistics of the collected data, the second shows
how the data was processed for the outliers, the third shows
the tests for normality alone and the fourth displays tests for
the hypotheses.

13

A. Descriptive Statistics

The first step in order to have a better understanding of
the collected data is to have an overall look at the descriptive
statistics. In Table II, we have a summary of statistics (Min,
Max, Mean, Median, etc) of both complexity levels, basic
and advanced, for each of the treatments, single and multiple,
and dependent variables, energy consumption, CPU usage, and
memory usage.
Energy Consumption. By analyzing the value of the median
of the energy consumption (e) in Table II, it is possible to
determine that for the complexity level basic there is an in-
crease, although it is not significant. While for the complexity
level advanced there is a slight increase in the median of
multiple-activity compared to a single activity architecture.
The boxplots in Fig. 5 give a better overview of the descriptive
data in addition to the data present in Table II. Hence, we can
support our claim that the energy is fairly similar in the basic
app, but there is an increase in energy for multiple activities
in the advanced app. We can also observe that there exists a
few outliers in both basic and advanced complexity apps, and
these need to be removed.

Fig. 5: Box-plot of the energy consumption per treatment for
both complexity levels of the App.

Memory Usage. The value of the median of the memory usage
(m) in Table II, is larger when the basic app uses single activity
versus using multiple activities. However, for the advanced
app, there is no significant difference between the median of
the two architecture types.

The boxplot in Fig. 6 supports the inferences made based
on the descriptive statistics, as the spectrum of data for the
basic app using multiple activities is much smaller than for
the app using single activity. For the advanced app, the values
are fairly similar. Similar to the other variables, we can also
observe a few outliers in the basic and advanced apps.
CPU Usage. The value of the median of the CPU usage (c) in
Table II, are fairly similar between the architecture types, for
both complexity levels, with the single being slightly higher
in the basic app. It is possible to see a big gap between the
maximum value and the mean for all four scenarios, which
could entail potential outliers.

The boxplot in Fig. 7, supports the initial inferences about
the data. The single architecture type is slightly higher than
multiple architectures in the basic app, also showcasing a

Fig. 6: Box-plot of the memory usage per treatment for both
complexity levels of the App.

large number of outliers. While the advanced app shows fairly
similar values for both architecture types.

Fig. 7: Average CPU usage for both complexity levels.

B. Removing Outliers

As observed in the section above, it can be noted that
multiple datasets have outliers that need to be treated. This
can be caused due to various external factors while collecting
the data. The treatment of the data can be done in multiple
ways. One of them includes selecting the quantitative variables
from iris data. By calculating the first and third quantiles (Q
values), the interquartile range (IQR values), and by finding
the lower and upper limits for outliers. After this, we remove
the outliers by taking a subset of the original data that lay
within this range that is calculated using Q and IQR values.
We implement in-built R functions such as quantile(), IQR(),
and subset() and create data with minimal outliers for each
dependent variable (Energy, Memory, CPU Usage) for both
basic and advanced type of applications for the two treatments
single and multiple activity architectures [16].

C. Check for Normality and Transformation

Testing for normality is an essential step before testing the
hypotheses. We checked if the energy consumption, memory
usage, and CPU usage values are normally distributed via
(i) a visual analysis of Q-Q Plots and (ii) the application
of the Shapiro-Wilks statistical test with α = 0.05 [17].
We also applied several data transformation techniques to
explore the possibility of having a normal distribution, which
can potentially lead to higher statistical power. In conclusion,
the energy consumption values we measured are normally

14

TABLE II: Descriptive Statistics for all treatments and dependent variables: energy (e), memory (m), and CPU (c).
Complexity Basic Advanced
Architecture Single Multiple Single Multiple
Variable e (mJ) m (MB) c (%) e (mJ) m (MB) c (%) e (mJ) m (MB) c (%) e (mJ) m (MB) c (%)
Minimum 1.553 2.540 4.200 0.234 3.577 5.370 1.565 0.038 5.227 1.655 4.827 4.435
1st Quantile 1.830 3.862 10.000 1.844 3.797 6.410 1.688 5.145 6.408 1.776 4.962 6.201
Median 1.914 5.041 11.000 2.039 3.849 9.990 1.721 5.238 7.015 1.916 5.576 7.014
Mean 1.943 4.644 10.470 1.970 3.852 10.060 2.005 8.319 8.723 1.943 8.332 8.792
3rd Quantile 2.085 5.140 11.000 2.212 3.939 12.280 1.817 8.455 12.014 2.073 7.453 12.074
Maximum 2.378 5.223 16.840 2.491 3.984 16.900 6.007 18.465 14.594 2.488 18.722 15.603

distributed and will follow a parametric test. CPU Usage and
Memory could not be transformed to a normal distribution and
will follow a non-parametric test. The Q-Q plots, results of the
Shapiro-Wilks test, and the details about normality checks and
transformation are available in the replication package.

D. Hypotheses Testing

The Energy data follows a normal distribution, and hence
we consider a parametric test called a two-sided T-Test. For
Memory and CPU Usage, we conduct a non-parametric
test called Mann Whitney Wilcoxon Rank Test, as it also
considers two-tailed values and is for data that is not normally
distributed. All of these tests were performed in R using
the various in-built functions t.test() and wilcox.test(). The
values of the p-value for each experiment, obtained after
running the tests on single and multiple activity datsets, for
basic and advanced types can be seen in Table III.

TABLE III: P-values for all dependent variables.
Hypothesis Test Basic Advance

Energy T-Test 0.1604 0.00041
Memory Mann Whitney Wilcoxon Test 2.6e-05 0.6809

CPU Mann Whitney Wilcoxon Test 0.436 0.5928

The significance level for both types of tests was fixed at
0.05. If the p-value is lower than 0.05, we reject the null
hypothesis. As is in the case of Energy for the advanced
complexity app and Memory for the basic complexity app. In
both these cases, we can conclude that the single and multiple
activity apps have a significant difference. The rest of the
results show us a value greater than 0.05 and we fail to reject
the null hypothesis, thus stating that both single and multiple-
activity do not have a significant difference.

Conclusion Single- and multiple-activities architectures tend
to perform similarly in terms o energy consumption, CPU
usage, and memory usage, with two (statistically significant)
exceptions: (i) multiple-activities architecture consumes more
energy than single-activity architecture in the advanced apps
and (ii) multiple-activities architecture uses less memory than
single-activity architecture in the basic apps.

VII. DISCUSSION

To answer the main research question RQ1, the sub-
questions will be answered separately.

[RQ1.1]: As noted in Table III, the p-value for Energy is
lower than the significance level of 0.05 and we reject the
null hypothesis in the advanced complexity app. This means
there is a difference between single and multiple-activity

architecture types. We do not see a significant difference in
the basic complexity app, as the value is greater than the
significance threshold. This could be due to the fact that
our basic app is too simple to be able to exhibit noticeable
differences in terms of energy. Whereas, for the advanced app,
we can observe a difference because of the various added
features to the app that consume energy, such as the video
player, location API, etc.. We conjecture that this result is
due to the fact that in multiple-activity apps the OS needs
to recreate components when transitioning among the various
activities, while in single activity apps the OS just needs to
such components to the already-existing activity layout.

[RQ1.2]: For Memory, the basic app shows a significant
difference between single and multiple-activity architecture
in Table III whereas there is no difference in the advanced
complexity app. This difference in the basic app could be
because of an increase in memory allocation and the saving
and restoring of data between fragments. For multiple-activity
apps, the size of the data to be sent back and forth is very
small, but over time as the app continues to be utilized, the
data size increases. In single activity, this is much simpler as
the data has to be read and written within the same activity.

For CPU there exists no significant difference in any of
the complexities, basic or advanced. We believe the CPU data
could be somehow distorted due to external factors as we can
see that there are several outliers, and the data does not follow
a specific pattern. There is a certain density of data points
clustered together, which the tests consider as plot points rather
than dealing with them as outliers. A more comprehensive
outlier detection method can be used to treat the data, for
mitigating this potential source of bias.

The results of this study provide developers and researchers
an indication that using a single-activity architecture might
lead to different levels of energy and memory usage in
Android apps. Researchers may consider this result to
lay down the foundation for their future research, as we
found only a few studies related to the runtime impact of
single-activity and multiple-activity app architectures. As
for the developers, they may consider this result as initial
preliminary evidence that refactoring their Android app into
a single-activity app can lead to non-negligible changes on
its energy consumption and performance.

VIII. THREATS TO VALIDITY

Internal Validity. Regarding the mono-method bias, we used
only one tool to measure each dependent variable (i.e., CPU,

15

memory, and energy) which may result in a bias from the
profilers. To mitigate this threat, we performed several tests to
contrast the validity of the data and we assessed the reliability
of the measures. Moreover, we executed all the runs with
the same conditions for the two apps: minimum brightness,
Wi-Fi connection and locations enabled, and disabled push
notifications.
External Validity. The most relevant threat to the external
validity of our experiment is the use of apps that were
developed by us, due to the difficulty of finding two identical
apps developed with these two different architectures (single
and multiple activities). This may lead to the possibility of
the results not being as representative as they would be,
with the pre-existing apps with a higher level of complexity
than what we consider our advanced app to be. However, to
mitigate this effect we designed the advanced app so that it
uses different features of the Android platform representing
recurrent functionalities of Android apps, such as requests to
the Cloud, accessing user’s location, showing video contents
and images, etc. Lastly, the interaction of setting and treatment
and the interaction of history and treatment should not be
a threat to validity for our experiment, since the trials were
completed in the same computer over the span of several days
and there was no difference between either of the days.
Construct Validity. For this experiment, we defined the
constructs early in the design process by using the GQM
(Goal, Question, Metric) method. This experiment was carried
out taking solely the architecture of the app as the independent
variable. This means that our experiment might undergo a
mono-operation bias. However, to mitigate this effect and the
possible bias from our measurements, we performed multiple
repeated runs on the two subjects for the two different treat-
ments, each.
Conclusion Validity. It was crucial that the statistical tests
were appropriate to the type of distribution. For this, all
the data were tested for normality through the Shapiro-Wilk
Test and via Q-Q Plots. For the normally distributed data,
the hypotheses were analysed using t-tests. For the data that
did not present normal distribution, even after implementing
several techniques to transform the data to normal considering

IX. CONCLUSIONS

In conclusion, this paper researched the energy consumption
of a single-activity and multiple-activity Android application.
The testing was conducted on 4 android applications. Two of
them were created for a single activity and two for a multiple-
activity architecture with the principle of basic and advanced
complexity. Memory usage, energy consumption, and CPU
usage measurements were gathered from the test runs and ana-
lyzed. It was found that for a basic app, Memory usage shows a
significant difference between single and multiple-activity app
architecture which could be caused due to memory leaks and
data sharing. Moreover, it was noted that for the advanced app,

the skewness levels of the data, as mentioned in the previous
section, the hypotheses were analysed using a non-parametric
test called Mann Whitney Wilcoxon Test.
there is a significant difference between single and multiple-
activity for the Energy consumption measurements, most likely
due to the recreation of components that consume more energy.
Possible future work could include replicating the experiment
while making the advanced applications more complex as
it would help to find a clearer difference between the two
architecture types. Another approach would be testing the
applications across several Android devices, as our experiment
was only done on Google Pixel 5 with Android version 11. It
would be more insightful to see what would be the outcome
when using different Android versions and different devices.

REFERENCES

[1] A. Developers. (2022) Fragments. [Online]. Available: https://developer.
android.com/guide/fragments

[2] Y. Li, J. Ouyang, B. Mao, K. Ma, and S. Guo, “Data flow analysis on
android platform with fragment lifecycle modeling and callbacks,” EAI
Endorsed Transactions on Security and Safety, vol. 4, no. 11, 12 2017.

[3] M. Jun, L. Sheng, Y. Shengtao, T. Xianping, and L. Jian, “Leakdaf:
An automated tool for detecting leaked activities and fragments of
android applications,” in 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, 2017, pp. 23–32.

[4] J. Wang, Y. Liu, C. Xu, X. Ma, and J. Lu, “E-greendroid: Effective
energy inefficiency analysis for android applications,” 09 2016.

[5] X. Li, G. Li, and X. Cui, “Retriple: Reduction of redundant rendering
on android devices for performance and energy optimizations,” in 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[6] O. Signal. (2015) Android fragments. [Online]. Available: https:
//www.opensignal.com/reports/2015/08/android-fragmentation

[7] “Android Developers - EditText.” [Online]. Available: https://developer.
android.com/reference/android/widget/EditText

[8] “Android Developers - Location.” [Online]. Available: https://developer.
android.com/training/location

[9] “Android Developers - ListView.” [Online]. Available: https://developer.
android.com/reference/android/widget/ListView

[10] “Android Developers - Video Player.” [Online]. Avail-
able: https://developer.android.com/guide/topics/media-apps/video-app/
building-a-video-player-activity

[11] I. Malavolta, E. M. Grua, C.-Y. Lam, R. de Vries, F. Tan,
E. Zielinski, M. Peters, and L. Kaandorp, “A Framework for
the Automatic Execution of Measurement-based Experiments on
Android Devices,” in 35th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW ’20). ACM,
2020. [Online]. Available: https://github.com/S2-group/android-runner/
blob/master/documentation/A_Mobile_2020.pdf

[12] “Monkeyrunner utility.” [Online]. Available: https://developer.android.
com/studio/test/monkeyrunner

[13] “Android Debug Bridge.” [Online]. Available: https://developer.android.
com/studio/command-line/adb

[14] “The android profiler.” [Online]. Available: https://developer.android.
com/studio/profile/android-profiler

[15] “Batterystat utility.” [Online]. Available: https://developer.android.com/
topic/performance/power/setup-battery-historian

[16] “How to Remove Outliers from Data in R.” [Online]. Available: https:
//universeofdatascience.com/how-to-remove-outliers-from-data-in-r/

[17] S. S. Shapiro and M. B. Wilk, “An analysis of variance test
for normality (complete samples),” Biometrika, vol. 52, no. 3/4, pp.
591–611, 1965. [Online]. Available: http://www.jstor.org/stable/2333709

[18] Comprehensive R Archive Network (CRAN), “CRAN - Package
moments.” [Online]. Available: https://cran.r-project.org/web/packages/
moments/index.html

16

