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Abstract. Measurement-based experiments are a common solution for
assessing the energy consumption of complex software systems. Since
energy consumption is a metric that is sensitive to several factors, data
collection must be repeated to reduce variability. Moreover, additional
rounds of measurements are required to evaluate the energy consumption
of the system under different experimental conditions. Hence, accurate
measurements are often unaffordable because they are time-consuming.
In this study, we propose a model-based approach to simplify the energy
profiling process and reduce the time spent performing it. The approach
uses Layered Queuing Networks (LQN) to model the scenario under test
and examine the system behavior when subject to different workloads.
The model produces performance estimates that are used to derive en-
ergy consumption values in other scenarios. We have considered two sys-
tems while serving workloads of different sizes. We provided 2K, 4K, and
8K images to a Digital Camera system, and we supplied bursts of 75 to
500 customers for a Train Ticket Booking System. We parameterized the
LQN with the data obtained from short experiment and estimated the
performance and energy in the cases of heavier workloads. Thereafter, we
compared the estimates with the measured data. We achieved, in both
cases, good accuracy and saved measurement time. In case of the Train
Ticket Booking System, we reduced measurement time from 5 hours to
35 minutes by exploiting our model, this reflected in a Mean Absolute
Percentage Error of 9.24% in the estimates of CPU utilization and 8.72%
in energy consumption predictions.

Keywords: Layered Queuing Networks · Performance Analysis · Energy
Consumption · Software



1 Introduction

The ubiquity of ICT devices triggered a continuous digitalization of information,
thus facilitating access, storage, and manipulation of data. ICT brought several
benefits to society, such as monitoring the health conditions of people in real-time
or having almost universal access to educational content. However, continuous
digitization has also downsides. A considerable amount of information demands
expensive resources for processing and storage, with a consequent rising need for
energy to build and power ICT devices. As energy demand increases, the impact
of ICT in terms of carbon dioxide (CO2) emissions becomes significant [21].
Belkhir et al. estimate that ICT devices will produce 14% of global CO2 emissions
by 2040 [5].

As already discussed in 2018 by Georgiou et al [15] in the context of IoT sys-
tems, technology has made considerable advancements for increasing hardware
power consumption savings, which however can be undermined by poor design
decisions at the software level. Software energy optimization is a hard endeavor,
where multiple (and frequently conflicting) design and implementation decisions
can influence the energy footprint of the software [21]. Making developers aware
of the impact of their decisions on the energy consumption of their software is
fundamental to cutting it down [10]. However, energy optimization cannot be
pursued in isolation, because it may negatively impact on other non-functional
attributes of software and, in particular, on performance. Hence, software design
decisions have to induce acceptable tradeoffs between the satisfaction of perfor-
mance requirements and power consumption savings [12]. Energy/performance
tradeoffs can be analyzed by measurement-based experiments, although they can
be very time-consuming and they need contextual conditions to be taken under
control (e.g., temperature of devices) for achieving reliable results. Modeling is
often a valuable alternative to measurements, especially in cases where enough
information about the software system and its context is known. Obviously, en-
ergy/performance models have to hold an appropriate level of abstraction that
allows practitioners not to miss relevant aspects of the system and, at the same
time, to keep an acceptable complexity of the model evaluation process [6].

This study explores the combination of measurement-based experiments and
modeling in the context of energy/performance analysis of software systems, in
order to benefit from the advantages of both of them. In particular, we investi-
gate how to exploit performance models (specifically, Layered Queuing Networks
– LQNs) to reduce the experimentation time while keeping a high accuracy in
the energy consumption estimate of a software system. Although LQNs are a
well-known modeling notation for software performance analysis [13, 20], their
adoption for energy consumption analysis has yet to be developed. LQNs fit our
purposes as they represent system resources as time-consuming entities. As en-
ergy consumption is a time-based metric, it is possible to define a relationship
between performance and energy consumption according to resource utilization
(namely, the amount of time a resource is busy). We reduce the reality gap be-
tween the LQN model and the system under analysis by systematically refining
the LQN model using data obtained from a small-scale measurement-based ex-



periment. After achieving satisfactory accuracy, the LQN can be used to study
the system under different workloads and get corresponding resource utilization
estimates. These estimates can be multiplied by the energy consumed per sec-
ond by each resource to obtain the total energy consumed while the resources
are busy. We tested our approach on two different systems: Digital Camera,
which we employ as a running example, and Train Ticket Booking System. The
former is an image processing application that we deployed on an embedded
platform, while the latter is a container-based web application for managing
train bookings. For the Digital Camera, the supplied workloads correspond to
batches of images of different resolutions, namely 2K, 4K, and 8K. Instead, for
Train Ticket Booking System the workloads consists of bursts of 75, 150, 225,
300, 375, 450, and 500 customers. We parametrized the LQN with data mea-
sured for the batch of 2K images and the 75-customer burst, respectively, then
we estimated resource utilization and energy consumption for different scenarios.
Promising results emerged by comparing the measured data with the estimates.
The Mean Absolute Percentage Error (MAPE) obtained for Train Ticket Book-
ing System equals 9.24% for CPU Utilization and 8.47% for energy consumption.
At the same time, we reduced experimentation time from 5 hours to 35 minutes.

Hence, the main contributions of this study are: (i) an approach for using
LQNs to make accurate energy estimations of a software system, (ii) a prelim-
inary empirical evaluation of the proposed approach on two different software
systems across different domains, (iii) a replication package for the independent
verification and replication of the performed evaluation 3. The paper is struc-
tured as follows. Section 2 presents energy consumption basics and describes
the Layered Queuing Networks. Section 3 delves into the approach and shows it
through a running example: the Digital Camera case study. Section 4 outlines
the experiments and the results achieved on the Train Ticket Booking System
case study. Threats to validity and related work are discussed, respectively, in
Section 5 and Section 6. The paper ends with conclusions in Section 7.

2 Background

2.1 Software Energy Measurement

The physical quantities used for expressing the energy consumed by software
executions are electrical energy and electrical power. Electrical energy quantifies
the amount of work needed to drive current through a circuit, while electrical
power refers to the rate the energy is consumed by the circuit at any instant.
Energy is commonly measured in joule (J), which is defined in the International
System of Units (SI). Power, unlike energy, expresses a rate. Indeed, power is
defined as the total energy consumed over time measured in joule per second
(Js ) or, following the standard SI, in watt (W).

Literature includes a plethora of tools for measuring software energy con-
sumption [9]. We distinguish between energy profilers and power monitors. En-
ergy profilers are software tools providing an estimation of the energy consumed

3 https://doi.org/10.5281/zenodo.7877782



by a running application. Compared with power monitors, energy profilers are
easy to set up but are less accurate as they provide estimates. Among the most
popular ones we have: perf and powerstat. Power Monitors are hardware de-
vices wired directly to the system to profile, e.g., to the battery of the system.
Therefore, they are more accurate but also more complex to set up. In this work,
we exploit two power monitors for our experiments: the Monsoon [19] and the
Watts up Pro? [22]. Instead of reporting total energy usage in joules, several
power monitors report the power consumption in watts. They read, at each in-
stant t, the current intensity (I) and voltage (V) and calculate the power as
P = I × V . The total energy consumption (E) can be derived from the power
consumption. When the power consumption is constant, the total energy spent
is proportional to the observation interval ∆t, that is E = P ×∆t. As previously
mentioned, some power monitors calculate power values querying the system
every instant t over an observation period ∆t. This process results in a dataset,
where each row is formed by the power value in watts and the timestamp of
the reading. This dataset describes the distribution of power values consumed
during ∆t. Since power corresponds to the rate at which energy is consumed
over time, it is possible to retrieve the total amount of energy spent between
two instants t0 and tn, by calculating the area bounded by these two instants
underneath the distribution. Formally, this area can be calculated by integrating
the power consumption values over t0 and tn.

2.2 Layered Queuing Network

Layered Queuing Networks (LQNs) are used to describe and analyze the perfor-
mance of a system [24]. An LQN captures the behavior of a system as a set of
interacting entities sending and servicing requests. Incoming requests generate
the workload that is handled by system resources such as CPU or Disk. If a
request comes to a resource that is already busy, the request is queued. Such
a model of computation is peculiar to ordinary queuing models. LQNs extend
ordinary queuing models by implementing simultaneous resource possession. Si-
multaneous resource possession occurs when a resource is blocked waiting for
another to finish serving a request. Figure 3 shows the LQN used for analyzing
a Train Ticket Booking System. The root task may be used to specify the work-
load which the system will undergo or receive requests from the environment.
In the former case, the task is named reference task and represents the number
of users in the system, while in the second case, requests arrive following a rate
specified with the λ parameter. System entities are shown as parallelograms and
are called tasks. A task provides service through one or multiple entries and
has a single host processor. Processors are represented with circles connected
to a task and embody system resources. Thus, processors handle the workload
generated by the entries. Entries are represented as rectangles within tasks and
specify a demand corresponding to the mean time the processor is busy serving
the entry. Communication among tasks is described by arrows connecting the en-
tries. These arrows are labeled with the mean number of requests the client task
sends to the server task. Carleton University provides a suite of tools including



modeling languages and an analytic solver to create and retrieve performance
metrics [7]

3 Our approach

As mentioned in the introduction, we exploit performance models to assist de-
signers in making energy-related decisions. For this purpose, we have conceived a
modeling process to reach a good trade-off between abstraction and accuracy of
estimates. Developing models of existing systems may help to understand them
better, which includes identifying flaws and finding opportunities for improve-
ment. At design time, models are used to describe design choices or to verify con-
formance to the requirements. Considering that implementation details highly
influence the energy consumption of the software, we chose to proceed bottom-up
and exploit models for studying existing software systems. This implies the use
of models that can be simulated or solved analytically to study ”what if” cases
and gain fast insights into the system under study. In addition, we see model-
ing as an opportunity to reduce the complexity and time of measurements. Our
approach combines both strengths of measurements and abstraction.

System

Measured
Data

Profiling

Model

Modeling

Parametrized Model

Parametrization

Model
Validation

No

Yes

Does the model yield
accurate estimates?

Is it possible to raise
the level of abstraction?

Fig. 1: The process underlying our approach.

Our modeling approach is schematically represented in Figure 1. Each rounded
box represents an activity, while labels on the edges embody the exchanged ar-
tifacts. Initially, an existing system is modeled and profiled. Profiling means



measuring the characteristics of the system that we planned to evaluate using
the models, in this case performance and energy consumption. Modeling and pro-
filing activities can be conducted in parallel. After the end of these two activities,
the measured data are used to parametrize the model. Taking performance as
an example, we can look at the rate at which requests arrive at the system, or
how long it takes software components to handle a request. Parameters such
as arrival rate, or service time are the input parameters of the model. Once the
model is parametrized, it is validated and possibly refined. In the validation step,
the correctness of the model and the accuracy of the estimations are considered.
Moreover, during this phase, designers refine the model removing unnecessary de-
tails and simplifying it. The process stops when consensus about model accuracy
and abstraction level is reached. We envisage that, under a set of assumptions, it
is possible to exploit the flexibility of performance models for estimating energy
consumption. Briefly speaking, since energy consumption is a metric based on
time, we can relate energy consumption and resource utilization over a fixed ob-
servation time. Our approach, at the moment, considers only the cases in which
energy consumption grows linearly with execution time. However, this is not al-
ways true. As reported by Cruz et al [9], some mobile architectures have fast
but power-hungry CPUs for processing heavy tasks and slower but more efficient
CPUs for less time-consuming tasks. In addition, CPUs frequency scaling mech-
anisms should be considered, as they impact the non-linearity between workload
intensity and power consumption [18]. Despite this, the approach has significant
benefits since performance models can be utilized to scale workload and retrieve
energy consumption values along with resource utilization estimates.

As a result of the modeling process depicted in Figure 1, we obtain a model
approximating the behavior of the system with a certain degree of accuracy. This
approximation stems from the behavior observed while profiling the system. So,
the model reproduces the behavior observed under the experimental setup of
the profiling phase. For example, profiling the system under a given workload
will produce a model representing resource usage under that specific workload.
This aspect becomes even more important when it comes to power consump-
tion. Indeed, behavior and power consumption are heavily connected. Different
experimental settings will result in different system behaviors and thus different
power distributions. On the other hand, we can exploit the relationship between
behavior and power distribution to infer that the modeled behavior will induce
a power distribution similar to the system one. Indeed, from the performance
model solution we know when resources will be busy handling requests. For this
reason, we can map the time interval resources are busy onto the power distribu-
tion measured during the profiling phase. Figure 2 shows an example of mapping
between model behavior and the power distribution measured on the system. In
this example, the power distribution is measured while running several times a
software on a server. The blue cross on the x-axis represents the end of a single
execution. Requests arrive periodically and require CPU and disk at the same
time. The CPU, depicted by the blue area, is occupied for a longer interval than
the disk, which is depicted in orange. White areas represent the time interval



when resources are idle. Each colored segment underneath the power distribu-
tion represents the energy consumed by a resource during that time interval
(see Section 2.1). Therefore, it is possible to obtain the energy consumption of a
resource by integrating the areas where the resource was busy (1). Thus, given
a resource, the sum of all the intervals in which a resource was busy (i.e., same
color intervals in Figure 2) represents the total energy demand (i.e., ED(res))
during the observation time (Equation 2). Accordingly, we can derive the aver-
age consumption per visit of each resource, namely E(res) (Equation 3). This
value is tied to a visit, so it reflects the energy spent serving a specific software
task. For example, if the CPU spent 2 seconds serving a visit, the energy spent
per visit refers to the consumption during two seconds. So, the energy consumed
per visit is measured in Joule

V isit . The Joule consumed per second (i.e., e(res)) can
be obtained from E(res), which is unbound to the size of a software task. We
calculated e(res) by dividing E(res) by the average time the resource is busy
performing a software task (Equation 4). Since e(res) is decoupled from the size
of the task visiting a resource, we can use it to estimate the energy consumed by
a resource busy serving a task with whatever size. In other words, since e(res) is
measured in Joule

s , it is untied from the workload and becomes a property of the
resource. Thus, we assume that it does not sensibly vary by scaling the workload.
In this way, we can use e(res) as a multiplier of the busy time of a resource and
estimate the energy consumption in case of larger workload sizes. This method
allows designers to scale up the estimations retrieved during low-effort exper-
iments to predict the energy and performance of more complex scenarios. In
this way, designers can very quickly obtain estimates for complex cases and thus
avoid laborious and complex experiments.

Fig. 2: Sample Power Profile highlighting CPU and Disk busy time, respectively,
in blue and orange.



E(res, i) =

∫ Sres

t0,i

P (t) dt[
Joule

V isit
] (1)

ED(res) =

#V isit∑
i=1

∫ Sres,i

t0,i

P (t) dt[Joule] (2)

E(res) =
ED(res)

#V isit
[
Joule

V isit
] (3)

e(res) =
E(res)

S(res)
[
Joule

s
] (4)

where:

res = a resource
t0 = the instant a resource starts to be busy
i = ith visit to a resource
#V isit = total number of visits to a resource
Sres = the average time the resource spends serving a software task

Running example: the Digital Camera

We deployed the application of a Digital Camera (DC) on a BeagleBone Black
(BBB) [4] development platform. The BBB is a ARM-based single core platform
equipped with Linux Debian, which, in our setting, executes only the services
of the operating system and the DC. As our approach envisions (see Section
3), we set an experiment in which the DC is subject to a synthetic workload.
While the DC processes the workload, we measure the power required by the
BBB using a Monsoon Power Monitor [19], which is placed between the BBB
and a notebook. The notebook orchestrates the experiment, stores the power
consumption recorded by the power monitor, and records the performance of
the BBB. Performance measures include the time DC takes to process an image
(i.e., the response time) and resources utilization. The notebook queries the
operating system of the BBB and retrieves, for each execution, the busy time of
the CPU.

The workload consists of a stream of image batches. A batch contains 30
pictures of the same format chosen between 2K, 4K, and 8K. A total of thirty
batches are provided to the application, i.e., 10 per format. The DC processes all
images sequentially in a batch, then pauses for two minutes before continuing.
Their arrival is randomized to avoid any influence of image size on measurements
[23]. The batch size is set to 30 to achieve statistical significance of metrics
derived from observed behavior, such as resource utilization.

We determined the energy spent by the CPU to operate a batch of a partic-
ular format based on Equation 3. Therefore, using the measured response time,
we calculated the e multiplier using Equation 4, which represents the average
power in Joule

s spent by the CPU. As Section 3 remarks, e is a property of



the resource, which is detached from the characteristics of the visiting task and
therefore has the same value across scaled workloads. If we know or estimate the
S(res) variable of Equation 4, we can use the e profiled for the batches of 2K
images to discover the average energy spent for batches of format 4K and 8K.
Consequently, we obtain estimates of the energy consumed for batches of 4K and
8K images without taking any measurements. We used an LQN to simulate the
arrival of 30 images of 4K and 8K and estimate the response time for the corre-
sponding batch. The LQN has a single task, representing the DC, connected to
a single processor, which embodies the CPU. Incoming images arrive following
a rate (i.e., λ). By varying the λ parameter, we replicated sequential arrival of
4K and 8K images, while changing the service time of the DC task, we set the
average CPU processing time per image. In fact, the service time of the CPU
differs based on image size. The model yields estimations concerning both the
time it takes the CPU to handle a batch of 30 images and CPU usage.

Table 1 provides the results according to the image format of a batch. The
table includes the arrival rate λ, the time spent handling a batch, i.e. the re-
sponse time, CPU utilization, and energy consumed per batch. Columns con-
taining two values show the measured value on the left and the corresponding
estimates on the right. The estimates for the energy consumed per batch are
calculated multiplying 1.57J

s , which corresponds to the e calculated for batches
of 2K images, by 240.30s and 960.60s, which is the estimated response time for
batches of 4K and 8K images. By comparing estimates to the measurements, it
can be concluded that the results are promising. Finally, the BBB data sheet
reports a range of 1.04J

s to 2.3J
s consumed by the platform when subject to

various load [4]. The e(CPU) multiplier of the DC falls within this range. This
observation confirms the reliability of the e(CPU) used for the analysis and the
value of the approach for evaluating particular combinations of hardware and
software. The small complexity of this case study and the availability of the DC
source code, have simplified the mapping process between power distribution
and the busy time of the CPU. Indeed, the DC executes only few functions in
sequence, and from the source code we could see when the CPU operations were
performed. In addition to the plethora of analyses that can be done by varying
LQN parameters, we also gain benefits in terms of time. In fact, we obtained
energy estimations without performing experiments in the 4K and 8K cases.

4 Evaluation

In light of the promising results obtained from the experiments with the Digital
Camera, we decided to validate the method using a more widely used case study:
Train Ticket Booking System (TTBS) [14], which is an application comprised of
68 Docker containers that manages bookings of a railway system.4

Consistently with the method described in Section 3, we set up a testbed for
profiling TTBS and supplied a synthetic workload to the application. Therefore,

4 For our measurements, we used release 0.0.4: https://github.com/FudanSELab/
train-ticket/tree/release-0.0.4

https://github.com/FudanSELab/train-ticket/tree/release-0.0.4
https://github.com/FudanSELab/train-ticket/tree/release-0.0.4


Table 1: Results for the Digital Camera and Train Ticket Booking System ac-
cording to the size of the input. Legend: IS: Input Size; λ: Arrival Rate; R:
Response Time; U: CPU Utilization; e: Average Power Consumption; EC: Av-
erage Energy Consumed. Columns with double values indicate measured and
estimated values (on the right).

IS λ ( images
s

) R (s) U (%) e (J
s
) EC (J)

Digital Camera

2K 0.48 60.30 - 60.30 96.30 - 96.48 1.57 95.27 - 95.16
4K 0.12 240.36 - 240.30 96.76 - 96.12 1.59 382.46 - 379.24
8K 0.03 960.73 - 960.60 97.39 - 96.06 1.59 1537.96 - 1516.04

Train Ticket Booking System

75 6.45 4.09 - 4.63 35.96 - 39.86 78.56 321.99 - 364.17
150 9.17 8.89 - 9.27 50.72 - 56.73 80.89 719.82 - 728.34
225 10.32 13.86 - 13.90 57.88 - 63.77 82.45 1143.19 - 1092.51
300 11.02 18.96 - 18.54 61.70 - 68.10 82.28 1560.54 - 1456.68
375 11.34 24.95 - 23.17 64.91 - 70.08 82.02 2047.20 - 1820.85
450 11.51 29.89 - 27.81 66.32 - 71.13 82.77 2474.40 - 2185.03
500 11.64 33.73 - 30.90 67.67 - 71.94 82.67 2788.76 - 2427.81

λ=$rate
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Fig. 3: Layered Queuing Network of Train Ticket Booking System. The variable
$rate varies based on the workload to provide to the model.



we modeled TTBS through an LQN (see Fig. 3) and parametrized the model
with the measurements retrieved during the fastest experiment. For the sake of
space, we do not show the iterations, described in Section 3, performed to obtain
the LQN. Each task in the model embodies a Docker container, which has its
service time indicated in square brackets. We remark that this value stands for
the average time a container kept the CPU busy. We included a task called
Residual that models the time spent on the CPU by unrepresented containers.
Thus, this task can be seen as a delay that is triggered as requests arrive.

The testbed consists of two machines, M1 and M2, used, respectively, to
record the measurements and run TTBS. Both machines run Ubuntu Linux. M2
has 32 GB of RAM and 8 CPUs. It is worth to remark that using two different
machines we reduce the perturbation on the machine where the application is
running. Hence, we collected results as cleaner as possible. We provide TTBS
with a variable-sized burst of customers and measure the performance and the
energy expense of M2 for each burst. The bursts can have size equal to 75 (i.e.,
the one we used to parameterize the LQN model), 150, 225, 300, 375, 450, 500
and were randomly supplied to TTBS for 30 times. This means for each size we
collected 30 readings for a total of 210 executions. Randomization is necessary
to remove the burst size from the factors that might influence the readings [23].
Further, we inserted a one-minute pause between executions to allow M2 to cool
and thus prevent subsequent executions from affecting the profiled data. We
empirically validated the pause we need to have a fresh machine. Measurements
are coordinated through a bash script running on M1. The script runs JMeter [2],
which generates a burst of customers operating on TTBS. At the same time,
it records application and M2 performance from the operating system of M2,
while the power consumption of TTBS is recorded from a Wattsup Pro power
monitor [22] connected to M2. Additionally, we measured disk utilization, but
excluded it from the analysis because it was too low to be meaningful.

(a) Performance (b) Energy Consumption

Fig. 4: Comparison between measured and estimated results.



We set the arrival rate, i.e., the λ parameter of the LQN in Figure 3, and
the service time of each task according to the data collected while supplying
75-customer bursts. Therefore, we incremented the λ parameter to replicate the
arrival of 150, 225, 300, 375, 450, and 500 customers. The LQN returns CPU
utilization predictions that we compared against the measurements. Table 1
reports performance and energy metrics for each batch size. It provides the
arrival rate, i.e., the one we also supplied to the LQN, the response time, CPU
utilization, the average power consumed by the CPU, i.e., the e multiplier, and
the average energy consumed per batch. The columns containing two values
show the measured value on the left and the corresponding predicted value on
the right.

As expected, the CPU utilization rises according to the size of the burst. In
our experiment, CPU utilization ranges from 35.96% when supplying a burst of
75 customers to 67.67% with a burst size of 500 customers. Figure 4a shows the
distance between CPU utilization estimates and measurements varying burst
size. The predictions slightly overestimate the measurements. This overestima-
tion is quantified by the Root Mean Squared Error (RMSE) which equals 5.27%.
Moreover, we obtained a Mean Absolute Percentage Error (MAPE) of 9.24%,
which confirms the accuracy of the CPU utilization predictions. Besides utiliza-
tion, the LQN returns response time estimates for each burst size. Therefore, it
is possible to estimate the average energy consumed for a given burst by combin-
ing the corresponding response time prediction with the e multiplier calculated

for the 75-customer burst, i.e., E(CPU)
S(CPU) = 321.99J

4.098s = 78.56J
s . For example, given

the response time estimation for a 500-customer burst, i.e., 30.90 seconds, we
calculated the corresponding energy consumption by multiplying it by e us-
ing Equation 4. We obtained an estimation of 2427.81 J, which is lower than
the measured energy consumption, i.e., 2788.76 J. Figure 4b summarizes energy
consumption predictions for each tested burst size. The energy consumption esti-
mates are quite accurate as also evidenced by the RMSE and the MAPE which
are equal to 200.16 J and 8.72%, respectively. However, we can observe that
as the burst size increases, the difference between the prediction and the mea-
sured value also increases. As it can be seen from Figure 4, the RMSE between
the energy estimation and the measured one shows a divergence trend meaning
that we can suppose having a larger RMSE as the size of the burst grows up.
Whereas, the response time trend appears to be convergent. We suppose that
this phenomenon may be due to the amount of data collected during the short-
est experiment. In our case, this can be noticed by comparing the value of the
e across burst sizes. There is a difference of approximately 4J

s between the e
calculated with 75-customers burst data and the one measured for greater work-
loads, which is nearly 82J

s . Finally, by exploiting the LQN, we gain savings in
terms of experimentation time. We spent nearly 5 hours collecting all the data
for different burst sizes. This period can be reduced by measuring the system
undergoing bursts of 75 customers and exploiting the model for predicting en-
ergy and performance for greater workloads. By doing so, we would have spent
only 35 minutes for experimentation versus 5 hours for measuring the 7 cases.



5 Threats To Validity

This discussion of threats to validity follows the classification made by Wohlin
et el. [23]. The results of the study might be affected by Conclusion Validity
threats due to the low significance of the sample collected during the lower-effort
experiment. In fact, due to the short duration of this experiment, the sample
collected may not be enough to accurately characterize either the LQN parame-
ters (e.g., service time of containers) or the energy data (e.g., value of eJ

s ). This
inaccuracy affects the estimates since we use this dataset to parameterize the
LQN and derive energy consumption values for heavier workloads. Moreover, we
considered a small set of data points, i.e., 3 image formats for the Digital Cam-
era and 7 different burst sizes for Train Ticket Booking System. This limitation
hampers generality and could influence the results, as the linearity between en-
ergy consumption and burst size for Train Ticket Booking System. In both case
studies, we consider only the load handled by the CPU and scaled workloads.
The findings might not be confirmed in situations involving more resources and
different types of workload. Therefore, they might not be generalizable and the
work might be affected by Construct Validity threats. Finally, we do not consider
a broad sample of hardware/software systems. For example, we do not examine
battery-powered systems, which may have power-saving modes. These character-
istics might impact the measurements of energy consumption and performance.
As a result, the study might be affected by External Validity threats, making it
difficult generalize the findings to all types of systems.

6 Related Work

To the best of our knowledge, this is the first study investigating and quantita-
tively evaluating how performance models (specifically, LQNs) can be exploited
to make accurate energy estimations of software systems. Moreover, in our case,
the models are used to support measurement-based experiments and reduce ex-
perimentation time, thus assessing situations that designers aimed to measure.
Several papers in the literature use queuing models to define energy-aware be-
haviors. These works come from different domains, such as robotics [11], wireless
sensor networks (WSNs) [16,17,25], or cloud computing [3]. Cerotti et al. [8] use
a queuing model to improve the utilization of the servers in a data center. In-
deed, depending on the workload, some servers may be subject to long periods of
low utilization, which still generate significant energy consumption. The queuing
model incorporates a controller which manages the incoming workload so that
servers maximize their throughput and resource utilization. So, each request will
require less energy to serve, reducing the total energy consumption. Marsan and
Meo [1] apply queuing models to optimize the energy footprint of a university
WLAN. The authors consider the areas covered by multiple access points (APs).
Co-located APs can be turned on/off, depending on the capacity of the group
of APs to provide service and the number of active users accessing the WLAN.
This situation is modeled with a queuing system which outputs the number of



APs of a group that should be active to handle a given workload. In some of the
situations, the authors manage to save even more than half of the energy usually
expended to power the WLAN.

7 Conclusions

In this paper we have introduced a model-based approach for simplifying the en-
ergy consumption estimation of software systems. We have exploited the linear
dependency of energy consumption and performance to extrapolate estimations
of the former one in scenarios that would require high measurement times in
practice. We tested the approach using a running example: Digital Camera,
then validated the results on a more complex application, Train Ticket Booking
System. The experimental results are quite promising, thus we plan to apply
our approach to larger-size energy-critical software systems. Besides, we intend
to examine the performance and energy consumption of resources other than
the CPU, such as the disk and network. Although the approach has been imple-
mented on top of LQN model, the whole process is independent of the modeling
notation adopted for sake of performance analysis. Therefore, as further future
work, we plan to consider different modeling notations that could be more suit-
able in specific application domains.
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