Architectural Tactics for Energy-aware Robotics
Software: A Preliminary Study

Katerina Chinnappan’, Ivano Malavolta', Grace A. Lewis?,
Michel Albonico®, and Patricia Lago!'»*

! Vrije Universiteit Amsterdam, The Netherlands
{i.malavolta | k.p.chinnappan | p.lago}@vu.nl
2 Software Engineering Institute, Carnegie Mellon University, USA
glewis@sei.cmu.edu
3 Federal University of Technology, Parana - UTFPR, Brazil
michelalbonico@utfpr.edu.br
4 Chalmers University of Technology, Sweden

Abstract. In software engineering, energy awareness refers to the con-
scious design and development of software that is able to monitor and
react to energy state. Energy awareness is the key building block for en-
ergy efficiency and for other quality aspects of robotics software, such
as mission completion time and safety. However, as of today, there is no
guidance for practitioners and researchers on how to architect robotics
software with energy awareness in mind. The goal of this paper is to
identify architectural tactics for energy-aware robotics software. Specif-
ically, using a dataset of 339,493 data points extracted from five com-
plementary data sources (e.g., source code repositories, Stack Overflow),
we identified and analyzed 97 data points that considered both energy
consumption and architectural concerns. We then synthesized a set of
energy-aware architectural tactics via thematic analysis. In this prelimi-
nary investigation we focus on two representative architectural tactics.

1 Introduction

Energy is a critical resource for a company’s competitiveness and environmen-
tal sustainability; its management can lead to controlled operational expenses
and low carbon emissions. However, data shows that energy consumption has
increased considerably over time. For instance, it is projected that the industrial
sector will increase energy consumption by 44% between 2006 and 2030 [13].
Furthermore, Information and Communications Technology (ICT) also plays an
important role in energy consumption, where it is expected that by 2040 it will
alone consume the equivalent of today’s global energy production [1]. Robotics
software may impact both these scenarios.

Software is becoming the prominent aspect in robotics [11]. Robotics soft-
ware is becoming more and more complex in terms of control and communica-
tion, which inevitably leads to greater energy consumption [10]. Making robotics

Copyright (©) 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

K. Chinnappan et al.
2. ROS-BASED ROBOTICS SOFTWARE

software energy-aware can lead to cost and sustainability benefits. Additionally,
energy awareness is a key factor for battery-operated robots, such as autonomous
cars, drones, and service robots. Being energy-aware can lead to better quality of
service for the whole robotic system because the robot can operate for a longer
time, more safely, and more reliably [3].

Rethinking software development is a good starting point to reason about
how software systems consume energy [7]. This principle also applies to robotics
software [9]. The first step towards designing energy-aware robotics software is
to establish a set of concrete design options known as architectural tactics [4]
that roboticists can use as the foundation to achieve energy awareness. In this
study, we follow the definition of energy-aware software provided by Fonseca
et al.: software that is consciously designed and developed to monitor and re-
act to energy preferences and usage [8]. Accordingly, energy-aware tactics for
robotics software can be defined as those tactics whose response is system-wide
monitoring and communication of the energy levels of the robots; the monitored
energy levels can be used by other components within the robotic system for
different purposes, one of them (not the only one) being energy efficiency.

The goal of this paper is to identify and document existing energy-aware
tactics in state-of-the-practice robotics software. We consider software running
on the Robot Operating System (ROS) [2]| as it is the de-facto standard for
robotics software [10]. To achieve this goal, we build on a previously constructed
dataset [9] containing online data sources specifically related to the ROS com-
munity and millions of lines of code from open-source ROS projects. The initial
dataset contains 339,493 data points, which have been filtered to obtain only
those data points where roboticists discuss/refer to energy consumption and
discuss architecturally-relevant concerns. This filtering step produced 97 data
points that were analyzed using the thematic analysis technique. As a result, we
identified a set of architectural tactics for energy awareness in robotics software.
In this preliminary investigation we focus on two architectural tactics, namely:
(AT1) Energy Savings Mode and (AT2) Stop Current Task & Recharge. We
select those tactics among the others since (i) they are among the most occur-
ring tactics applied in the mined projects and (ii) they are complementary with
respect to their objective (AT1 is about energy-level provisioning and AT2 is
about mission recondiguration at runtime).

2 ROS-Based Robotics Software

ROS has become a de-facto standard that supports different robotics project do-
mains [11]. It currently supports more than 140 types of robots [2]. Its popularity
is a reflection of the vibrant ROS community, which has more than 59k questions
posted on the ROS Answers forum®, and another 2.6k discussions on ROS Dis-
courseS. ROS is also a framework that includes tools, libraries, and conventions
for developing robotics software [2]. Its goal is to support a collaborative and

® https://answers.ros.org
5 https://discourse.ros.org

K. Chinnappan et al.
3. MINING THE ARCHITECTURAL TACTICS

open development environment, and function as middleware for robotics soft-
ware, supporting the development of more complex solutions in which different
high-skilled teams provide different components.

In ROS, each robotics ecosystem component (e.g., robot, sensor, control ap-
plication) is designed as a node. ROS nodes can be distributed across multiple
tiers, and communicate with each other using three communication patterns:
topics, services, and actions. Topics implement a publish-subscribe pattern, i.e.,
one node publishes its data into a topic that other nodes can subscribe to and
then retrieve the published data. Services are based on remote procedure calls
(RPC), which are implemented following RPC conventions. Actions are used for
long-running processes, where one node requests an action from another node,
which starts the process, periodically publishes intermediate results, and notifies
the requester node when the process is finished. These three patterns are sim-
ple and based on well-known distributed system techniques, which simplifies the
development of robot communication interfaces. Furthermore, with the second
version of ROS (ROS2), part of the communication relies on a Data Distribution
Service (DDS) middleware, which further simplifies network programming.

3 Mining the Architectural Tactics

We extracted the architectural tactics in four distinct phases: 1) we build an
initial dataset of 339,493 data points by crawling open data sources for ROS-
specific data (e.g., ROS Answers, Stack Overflow, GitHub); 2) we filter the
dataset to extract the 562 data points that are specifically related to energy
by means of a combination of keyword-based search and manual analysis; 3) we
identify 97 data points where architecturally-relevant concerns are also discussed;
and 4) we synthesize the architectural tactics for energy-aware robotics software
via thematic analysis. Phases 1, 2, and 3 were already carried out in the context
of previous work [9], where we targeted tactics for energy efficiency, i.e., tactics
whose response is the reduction of energy consumption when performing a given
task. In this study, we carry out Phase 4 with a different goal, which is to identify
architectural tactics for energy awareness.

Due to space constraints, in this paper we only provide a high-level overview
of the main characteristics of two representative architectural tactics. The com-
plete description of those tactics (including the raw data we analyzed) is available
in the replication package for this study”.

4 Results

In this section we describe in two of the tactics we extracted: (AT1) Energy Sav-
ings Mode and (AT2) Stop Current Task & Recharge. Those tactics are among
the most occurrent ones in our dataset and their objectives are complementary.
AT1 aims to provides energy-level values to other nodes in the system, a user,

" https://github.com/S2-group /ecsa-2021-replication-package

K. Chinnappan et al.
4. RESULTS

or a third party; differrently, AT2 update the current mission according to cur-
rently available energy, specifically by interrupting a task when the energy level
becomes critical. For each tactic we provide the following information: (i) the
intent of the tactic, (ii) the solution in terms of a component-and-connector and
sequence diagrams that shows the main components that play a key role in the
tactic and their interaction, (iii) an ezample of a concrete implementation of the
tactic from our dataset.

4.1 Energy Savings Mode (AT1)

Intent. This tactic provides a shared space for storing information about the
robot’s state (i.e., blackboard architecture pattern), which ensures that all the
robotics software components are energy-aware. Thus, it informs components
when they need to start saving energy and adjust their behavior accordingly.

Solution. This tactic dictates to the components in a system whether or not to
enter into a state in which energy must be saved (enable or disable the energy-
savings mode).

Observer
Energy Savings Ener : State
gy Savings Observer
Mode (ESM))_ Mode Controller{| Co_ E
State
:Energy Savings Mode -
| Controller | :Observer |
get ESM state
ESM state
o T . |
- : turn off the energy-savings mode original state
[energy_level = sufficient] ACK »

[energy_level = crifical] | turn on the energy-savings mode _ gnergy-savings

Fig. 1: Energy Savings Mode Tactic (AT1)

Figure 1 shows a C&C and sequence diagram for this tactic. The Energy Sav-
ings Mode Controller acts as a decentralized blackboard component [12]. Specif-
ically, it keeps track of the current energy-savings mode of the robotic system
and then makes it available to the other components in the system. In the ma-
jority of cases, the Energy Savings Mode Controller is proactive: it requests the
current energy-savings mode from one component in the system and, based on
the response, it dictates to the rest of the components to either disable or en-
able the energy-savings mode and change their state accordingl. Every Observer
component receives the current energy-savings mode, switches to it, and updates
the blackboard by sending an acknowledgment message. With this approach, all
of the Observers are aware of the current energy-savings mode of the system,
and the blackboard is aware of whether or not each component switched to the
instructed energy-savings mode.

K. Chinnappan et al.
4. RESULTS

Example. The rov-control project® implements this tactic in a Remotely Oper-
ated Vehicle (ROV) system with two components: the stepper node that maps
to the Observer component, and the manipulator node that maps to the En-
ergy Savings Mode Controller component. The stepper represents nodes in the
system which must comply with a certain behavior depending on the current
manipulator command (e.g., energy-savings mode). The manipulator node pub-
lishes the current command to a manipulator command topic, while the stepper
node subscribes to it. After receiving the current manipulator command and
complying with it, the stepper node publishes its new state to the stepper_state
topic, which is in turn subscribed to by the manipulator node.

4.2 Stop Current Task & Recharge (AT2)

Intent. This tactic is used to ensure that robots are able to complete their tasks.
Human intervention is not always available when the battery level is critical.
Therefore, it is important that the robot is energy-aware, able to replenish its
battery power when needed, and able to eventually safely complete its current
mission.
Solution. This tactic gracefully interrupts a task to prevent the robot from fully
discharging its battery by instructing it to recharge when the energy level reaches
a critical point. The task is resumed when the battery is sufficiently charged.
Figure 2 shows the tactic components. The Task Requestor is responsible
for requesting to execute a certain task, the Arbiter is responsible for deciding
whether or not to stop a task and recharge the battery or execute the task, and
the Task Executor is responsible for either stopping or executing the task. After
creating a task, the Task Requestor sends the task to the Arbiter, which then
checks the energy-level of the robot’s battery. If the energy-level is critical, the
Arbiter immediately removes the task and the task is not forwarded to the Task
Executor. In the case when the energy-level is sufficient, the Arbiter sends the
task to the Task Fxecutor and the Task Executor starts executing the task. In
parallel, the Arbiter starts checking the energy-level of the robot within a loop.
If throughout the entire execution of the task the energy-level stays sufficient,
the Task Requestor is notified about the completion of the task. If during the
execution of the task the energy-level becomes critical, the Arbiter instructs the
Task Ezxecutor to stop the task and request another component in the system
to recharge the battery. Once the battery is recharged (i.e., the energy level is
sufficient), the Arbiter instructs the Task Executor to resume the task. Finally,
when the task is completed, the Task Ezxecutor sends a completion message to the
Arbiter, which in turn forwards the completion message to the Task Requestor.
Example. The aau multi robot project? implements this tactic in an au-
tonomous multi-robot ROS-based system with two nodes: explorer and explo-
ration_ planner. In the system, the explorer implements the Task Requestor and
the Arbiter components, while the exploration_planner implements the Task

8 https://github.com /vortexntnu/rov-control
9 https://github.com/aau-ros/aau_multi robot

K. Chinnappan et al.
5. DISCUSSION

Task Task Options

Task Requestor E @ Arbiter E C: Task Executor E

Energy Level rJ\ rJ\ Recharging Station

| :Task Requestor | | :Arbiter | | :‘Task Executor |

D:l create task ; :
— send taskﬁ

ar i
P ' loop get energy level

energy level

| o Sk ® |
: : start task L
[energy_level = sufficient] I d
[at / M pause task stop task
[energy: level = critical] - task paused L]D
1 task paused
= recharged
[energyj_level = sufficient resume task resume task
._. task resumed < ___ taskresumed - UD
' task completed task completed
= -
task removed :

Fig.2: Stop Current Task & Recharge Tactic (AT2)

Ezxecutor. Because all the tactic decisions are made in the explorer (Arbiter), it
subscribes to the battery state ROS topic where the robot repeatedly publishes
its battery level. Then, the explorer instructs the exploration planner to execute
an exploration task. If the battery level is not critical (set by a threshold) the
exploration_ planner node starts executing the task and reports to the explorer
when it is finished. It is possible that during task execution the battery reaches
the critical level, which is when the explorer saves the current progress of the
task and instructs the ezplorer planner (on the robot) to recharge the battery.
The robot goes to the recharging station, and once its battery is charged, it
notifies the explorer node, which then provides it the necessary information to
continue the task.

5 Discussion

Roboticists are concerned about energy awareness. In this study, we
mined ROS data sources to identify and extract architectural tactics for energy-
aware robotics software. We discovered that there were in fact multiple data
points that used energy-aware tactics, which indicates that there are existing

K. Chinnappan et al.
6. CONCLUSIONS AND FUTURE WORK

methods available for roboticists to design and implement energy-aware robotics
software. The tactics range from only profiling energy consumption (like in AT1)
to controlling the robot to stop or pause its current task (like in AT2).

Data points are mostly for battery-operated robots, but the identified
architectural tactics can be applied to other robot types. It is also
interesting to note that the majority of the tactics are associated with battery-
operated robots even though we did not intend to only focus on such robots.
This might highlight the fact that batteries such as Lithium Ion and Lithium
Polymer have a limited energy budget, and therefore battery-operated robots
require an intelligent energy-management scheme. Additionally, several robotic
tasks are followed by idle times where the robot needs to recharge its batteries;
those idle times generally correspond to a loss of productivity [5]. Reducing idle
times can lead to a better quality of service because the robot can run for a
longer time and therefore more tasks can be completed. Even though most of
the tactics were extracted from data points related to battery-operated robots,
we argue that most of the identified tactics are applicable to robots that are
powered directly from a cable (and also apply to other domains, such as cloud
computing and the Internet of Things).

Roboticists tend not to explicitly document the architecture of their
software. There are several benefits in documenting software architectures [6],
such as helping new developers to understand projects and being able to discuss
possible trade-offs. However, the analyzed data points do not present any struc-
tured documentation or diagram that model the robotics software. In this study,
we provide some architecture views and tactic descriptions which may inspire
roboticists to do the same as they design their software.

6 Conclusions and Future Work

In this study, we mined architectural tactics for energy-aware robotics software
from data sources related to ROS-based systems. To identify energy-aware tactics
in existing systems, we carried out a multi-phase study that resulted in seven
energy-awareness tactics. To foster the applicability of the identified tactics (even
beyond the ROS community), we describe them in a generic, implementation-
independent manner by means of diagrams inspired by the UML component
and sequence diagram notation. The presented energy-aware tactics can serve as
guidance for roboticists, as well as other developers interested in architecting and
implementing energy-aware software. Furthermore, the extracted energy-aware
tactics can help researchers by providing empirically-grounded insights about
how practitioners are designing energy-aware robotics software.

As future work, we will build a complete catalog of architectural tactics for
both energy-awareness and energy-efficiency in the context of robotics software.
Moreover, we are planning to conduct an empirical assessment on how different
implementations of the identified tactics might impact the overall quality of
robotic systems by using real robots in real missions. For example, different

K. Chinnappan et al.
6. CONCLUSIONS AND FUTURE WORK

implementations of tactics might lead to different trade-offs with other quality
attributes, such as performance and reliability.

Acknowledgments

This research is partially supported by the Dutch Research Council (NWO)
through the OCENW.XS2.038 grant; and the CNPQ/FA through the PPP-CP-
20/2018 call.

References

10.

11.

12.

13.

. International Technology Roadmap for Semiconductors. Retrieved on June 04,

2021 from https://www.itrs2.net/itrs-reports.html.

ROS.org | Powering the world’s robots. Retrieved on March 12, 2021 from https:
//www.ros.org/.

M. Albonico, I. Malavolta, G. Pinto, E. Guzman, K. Chinnappan, and P. Lago.
Mining energy-related practices in robotics software. In International Conference
on Mining Software Repositories, MSR, New York, NY, May 2021. IEEE/ACM.
L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley Professional, 3rd edition, 2012.

G. Carabin, E. Wehrle, and R. Vidoni. A review on energy-saving optimization
methods for robotic and automatic systems. MDPI, 2017.

P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford. Documenting software
architectures: views and beyond. In 25th International Conference on Software
Engineering, 2003. Proceedings., pages 740-741. IEEE, 2003.

T. De Matteis and G. Mencagli. Proactive elasticity and energy awareness in data
stream processing. Journal of Systems and Software, 127:302-319, May 2017.

A. Fonseca, R. Kazman, and P. Lago. A manifesto for energy-aware software. IEEFE
Software, 36(6):79-82, 2019.

I. Malavolta, K. Chinnappan, S. Swanborn, G. Lewis, and P. Lago. Mining the ROS
ecosystem for green architectural tactics in robotics and an empirical evaluation. In
Proceedings of the 18th International Conference on Mining Software Repositories,
MSR, pages 300-311. ACM, May 2021.

I. Malavolta, G. Lewis, B. Schmerl, P. Lago, and D. Garlan. How do you ar-
chitect your robots? state of the practice and guidelines for ros-based systems.
In IEEE/ACM 42nd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 31-40, 2020.

I. Malavolta, G. A. Lewis, B. Schmerl, P. Lago, and D. Garlan. Mining guidelines
for architecting robotics software. Journal of Systems and Software, 178:110969,
2021.

M. Shaw and D. Garlan. Software architecture: perspectives on an emerging disci-
pline. Prentice-Hall, 1996.

K. Vikhorev, R. Greenough, and N. Brown. An advanced energy management
framework to promote energy awareness. Journal of Cleaner Production, 43:103—
112, Mar. 2013.

