
On the Energy Consumption and Performance ofWebAssembly
Binaries across Programming Languages and Runtimes in IoT

LinusWagner
Vrije Universiteit Amsterdam
l3.wagner@student.vu.nl

Maximilian Mayer
Vrije Universiteit Amsterdam

m.mayer@student.vu.nl

Andrea Marino
Vrije Universiteit Amsterdam

a.marino@student.vu.nl

Alireza Soltani Nezhad
Vrije Universiteit Amsterdam
a.soltaninezhad@student.vu.nl

Hugo Zwaan
Vrije Universiteit Amsterdam

h.zwaan@student.vu.nl

Ivano Malavolta
Vrije Universiteit Amsterdam

i.malavolta@vu.nl

ABSTRACT
Context. WebAssembly (WASM) is a low-level bytecode format that
is gaining traction among Internet of Things (IoT) devices. Because
of IoT devices’ resources limitations, using WASM is becoming a
popular technique for virtualization on IoT devices. However, it is
unclear if the promises ofWASM regarding its efficient use of energy
and performance gains hold true.
Goal. This study aims to determine how different source program-
ming languages and runtime environments affect the energy con-
sumption and performance ofWASM binaries.
Method. We perform a controlled experiment where we compile
three benchmarking algorithms from four different programming
languages (i.e., C, Rust, Go, and JavaScript) toWASM and run them
using two differentWASM runtimes on a Raspberry Pi 3B.
Results. The source programming language significantly influences
the performance and energy consumption of WASM binaries. We
did not find evidence of the impact of the runtime environment.
However, certain combinations of source programming language
and runtime environment leads to a significant improvement of its
energy consumption and performance.
Conclusions. IoT developers should choose the source programming
language wisely to benefit from better performance and a reduc-
tion in energy consumption. Specifically, Javy-compiled JavaScript
should be avoided, while C and Rust are better options. We found
no conclusive results for the choice of theWASM runtime.

ACMReference Format:
LinusWagner, Maximilian Mayer, Andrea Marino, Alireza Soltani Nezhad,
Hugo Zwaan, and IvanoMalavolta. 2023. On the Energy Consumption and
Performance of WebAssembly Binaries across Programming Languages and
Runtimes in IoT . In Proceedings of the International Conference on Evaluation
and Assessment in Software Engineering (EASE ’23), June 14–16, 2023, Oulu,
Finland.ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3593434.
3593454

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0044-6/23/06. . . $15.00
https://doi.org/10.1145/3593434.3593454

1 INTRODUCTION
The Internet of Things (IoT) refers to the system of networks of phys-
ical devices which allow for detailed data collection, processing, and
exchange [1]. Generally, IoT devices feature sensors, low powered
processing units and delegate computationally intensive tasks to
centralized servers, most likely in the cloud.While centralized cloud
paradigms are likely to remain prevalent in the industry for most
use-cases, some IoTapplications simply cannot relyonpersistentnet-
work connections due to performance or security issues [2]. These
concerns, eventually resulted in the idea of Edge Computing, which
bypasses the traditional data offload in favor of a distributed archi-
tectural style [3]. Leveraging IoT devices for processing data close
to the source or even locally can only be supported via heavily op-
timized and lightweight software. However, ease of deployment and
platform compatibility also play a crucial role for such distributed
designs to be a viable solution in the real world. As a result, vir-
tualization and containerization technologies like Docker are now
commonly employed in the IoT ecosystem [2]. In this context, the
need for performant and energy efficient containers is even more
pressing than that for their cloud counterparts.

Due to the intrinsic limitations of IoT devices, technologies that
reduce boot-up overhead, memory footprint, and overall container
size, such as WebAssembly (WASM), show greater potential than
traditional implementations meant for more powerful machines [4].
WASM refers to both an assembly-like low level language and to
its corresponding binary format. It was first introduced as a cross-
platform compilation target for languages that are traditionally not
executed on theweb, e.g., C/C++, and developed as an open standard
byW3C [5].More specifically,mostmodernwebbrowsers nowallow
for WASMmodule loading through JavaScript which unlocks the
potential for close-to-native performance in the browser web appli-
cation Virtual Machine (VM). Its sandboxed execution environment
and portability madeWASM also a perfect candidate for non-web
use-cases and embeddings such as for IoT devices.

In order to supportWASM execution outside web browsers, de-
velopers can rely on different runtimes. A runtime simply consists
of an implementation of theWASM specification which also binds
the execution to a specific system interface (e.g., POSIX or WASI)
or JavaScript VM (e.g. Node) by providing basic services such as
memory management and I/O. Being platform-agnostic, theWASM
specification makes this technology extremely flexible and allows
for runtime implementations that are tailored for specific use-cases.

Next to the choice of the runtime, source languages can also af-
fect the compiled binary execution performance. In practice, the

https://doi.org/10.1145/3593434.3593454
https://doi.org/10.1145/3593434.3593454
https://doi.org/10.1145/3593434.3593454

EASE ’23, June 14–16, 2023, Oulu, Finland LinusWagner, MaximilianMayer, AndreaMarino, Alireza Soltani Nezhad, Hugo Zwaan, and IvanoMalavolta

runtime characteristics of the final executable might depend on sev-
eral factors, such as the maturity of the compiler and support for
language-specific optimizations or features such as garbage collec-
tion [6]. Therefore, while WASM ensures cross-compatibility for
different languages, it is crucial for developers to be aware of the
current limitations in the compilation process. Because so many
factors are involved, it is challenging to reason about sustainability
and performance implications of WASM-based implementations for
typical IoT computing tasks. With this research, we aim to under-
stand the viability of this technology in real-world applications with
respect to energy efficiency and performance.

The goal of this study is to analyzeWASMas a compilation target
for different high-level programming languages for the purpose of
evaluating differences in performance and energy consumption. We
do so from the perspective of software developers, as the chosen
programming language has a significant impact on the develop-
ment process: based on personal experience or project requirements,
developers might prefer a specific language in different situations.

This experiment involves: (i) four different programming lan-
guages (i.e.,Rust, Go, JavaScript, C), (ii) two differentWASM runtime
environments (i.e.,Wasmer, Wasmtime), and (iii) three third-party
benchmarking algorithms. In terms of metrics, we measure the en-
ergy consumption, execution time, and memory usage of a real IoT
device. The results of this experiment provide evidence that the
choice of source programming language impacts energy, execution
time, and memory consumption, and that a bad choice can result in
performance drops even 5.4 times worse. We identified C and Rust
as solid options for software projects working with low-powered
hardware traditionally used in IoT devices, while Javy-compiled
JavaScript should be avoided due to its high resource usage. We did
not obtain statistical significance when considering the choice of
runtime environment, since programming languages perform very
differently when running on different runtime environments.

The main contributions of this study are: (i) an empirical in-
vestigation on the performance and energy consumption ofWASM
binaries compiled from 4 different programming languages (Rust,
Go, JavaScript, C) and running on 2 different runtime environments
(Wasmer and Wasmtime), (ii) a discussion of the obtained results,
and (iii) the full replication package of the study containing raw
data, source code, and scripts for data analysis. The results of this
study are meant as (i) knowledge for helping IoT developers when
choosingwhich programming language to use withWASM and (ii) a
starting point for further research into language-specific differences
within theWASM ecosystem in the context of IoT.

2 RELATEDWORK
Yan et al. conducted a systematic investigation to compare the per-
formance ofWASM and JavaScript applications [7]. They observe
that (i) the performance of WASM and JavaScript is highly depen-
dent on the runtime environment and (ii) WASM has a significant
performance advantage over JavaScript, but consumes three times
more memory than JavaScript with Just-In-Time compilation be-
cause of different memory management. We analyze and compare
high-level programming languages compiled toWASM for IoT de-
vices using a single platform while Yan et al. conducted a study that

comparedWASM and JavaScript on various runtime environments
and hardware platforms.

Herrera et al. [8] evaluated the performance of numerical com-
puting on the web, including JavaScript, WASM, and server-side
Node.js, across various devices, including IoT devices. Their study
results indicate thatWASM is slower to run in most browsers than
native C and runs at least 30% slower than native C, regardless of the
browser. Also, theWASMversion of Node.js always outperforms the
JavaScript version.Additionally, theWASMversionofNode.js comes
close to the performance of native C across all platforms. Compared
to Herrera et al., our study focuses exclusively on IoT devices and
examines energy consumption using non-browser runtime environ-
ments. We also chose benchmarks with 4 programming languages,
while Herrera et al. only evaluate JavaScript compiled to WASM
against a native C baseline.

Eriksson and Grunditz [9] looked into the performance ofWASM
as a containerization technology on IoT devices. For this comparison
WASM runtimes, Wasmer andWasmtime, are used and compared
againstDocker runningCorPython.The focus is tofindout ifWASM
can be deployed in IoT devices like network cameras. They find that
Docker runs 69 times slower thanWasmtime on small tasks, but does
well in medium to large tasks. In contrast, Wasmer is 3.5x slower on
medium to large tasks compared to Docker. Overall, it is the slowest
studied runtime because it optimized for a low start up time. They
conclude thatWASM is a very promising technology, but needs to
mature before being ready for the main stage.

Oliveira andMattos [10] investigate on howWASM can be used
to improve the performance of JavaScript applications in IoT de-
vices. Experiments were conducted on a Raspberry Pi to execute
JavaScript, WASM, and C algorithms while collecting information
on device resource consumption. Their results showed that using
WASM improved JavaScript performance by 39.81% in terms of exe-
cution time, had a negligible impact on memory usage, and reduced
battery consumption by 39.86%.

Macedo et al. [11] systematically analyzed the energy consump-
tion and runtime performance ofWASM and JavaScript on the web.
According to their statistical analysis, WASM produces significant
performance differenceswith up to 30% better energy efficiency than
JavaScript. These differences vary between microbenchmarks and
real-world benchmarks.

Hasselt et al. [12] examine the impact of using JavaScript compiled
toWASM on the energy efficiency of browsers on Android devices.
Their findings indicate thatWASM and JavaScript have significantly
different energy consumption rates.

Hampau et al. [13] investigated the effect of three different con-
tainerization strategies on the energy consumption andperformance
of AI-based computer visionmodels. Based on their findings,WASM
uses the least memory and disk space, making it a good program-
ming language for AI applications on the edge where memory and
disk space are limited. In contrast, the ONNX runtime consumes less
energy and executes the algorithms faster than Docker orWASM.

Our study is novel since we focus on comparing different pro-
gramming languages in terms of both energy consumption and per-
formance when they are compiled toWASM and run on IoT devices,
whereas the above-mentioned studies either focus on comparing
WASM against high-level languages, or on other quality properties
(e.g., performance or energy only), or on platforms different from IoT.

On the Energy Consumption and Performance ofWebAssembly Binaries across . . . in IoT EASE ’23, June 14–16, 2023, Oulu, Finland

3 STUDYDESIGN
3.1 Research Questions
This study aims at answering the following research questions (RQs):

• RQ1:How does the source programming language affect the
energy consumption ofWASM binaries?

• RQ2:How does the source programming language affect the
performance ofWASM binaries?

• RQ3:How does the runtime environment affect the energy
consumption of different programming languages inWASM?

• RQ4:How does the runtime environment affect the perfor-
mance of different programming languages inWASM?

Our RQs focus either on performance or energy consumption in
order to contributemeaningfully to our goal. However, the questions
can be divided into two categories: RQ1 and RQ2 are concernedwith
the impact of programming languages, while RQ3 and RQ4 focus on
the influence of runtime environments. For RQ1 and RQ2, we aim to
provide empirical evidence for real-life differences in performance
and energy consumption. This evidence can help to guide developers
in their choice of a programming language when building IoT-based
software withWASM. Therefore, a deeper analysis of the impact of
language-specific properties, such as dynamic typing or automatic
memory management, on the performance of WASM could be of
great value. Similarly, runtimes can have a significant impact on per-
formanceandenergy [7, 12].However,RQ3andRQ4arenotdesigned
to find the best runtime for the IoT domain, but rather intended to
understand whether different runtimes favor different high-level
programming languages.Onceagain, thiswouldallowtoguidedevel-
opers in their choices, and indicate that further research is necessary.

3.2 Subjects Selection
Benchmarking algorithms for this experiment are taken from The
Computer Language Benchmarks Game [14] (CLBG). It is designed
for the comparison of runtime performance across programming
languages, and has been used as a benchmark for energy efficiency
by others [15–18]. In its current version, the CLBG implements 10
computationalproblems inup to26 languages, aswell as a framework
to run, compare, and test different implementations. For this work,
we rely exclusively on the problem implementations in selected
languages and compile them toWASMwith custom scripts. Due to
the time limitations for thisproject,weselectedasubsetof3problems.
A short description of each benchmark is provided in Table 1.

Table 1: Explanation of the benchmarks.

ID Full name Description

NBY nbody Models the orbiting of Jovian planets.
BNT binarytrees Creates a perfect binary tree with the given depth.
SPN spectral-norm Calculates the maximum value in a given matrix.

In order to execute our benchmarks we use the following input
values and settings. For NBY we pass 55000000 as the number of
iterations for the bodies’ simulation. For BNTwe select a depth of
16. Since the available stack memory space in our execution envi-
ronment (see Section 4) would not allow for a depth larger than 16,
in order to obtain a sufficiently long execution time (i.e., in the order
of minutes) we fixed a number of repetitions for each run of this
benchmark to 80. For SPNwe pass a matrix size of 8100 as input.

3.3 Experimental Variables
For RQ1 and RQ2, this independent variable is the programming lan-
guage, to which we assign four treatments: C, Rust, JavaScript, and
Go. To select the four treatments, we considered three factors: the
overall popularity, the support of WASM, and the balance between
interpreted and compiled languages. To evaluate a language’s pop-
ularity, we used the Stack Overflow Developer Survey 2022 [19] with
over 71,000 responses, the Voice of IoT engineer [20] which is related
to our domain, and The State of Webassembly [21] which reflects the
popularity of languageswithin theWASM community. By analyzing
the top five languages of each survey, we found JavaScript, Python,
C, and Java to be most popular. But since the support forWASM is
currently unstable for Python and Java [22], we chose the next most
popular languages: Go and Rust. With JavaScript, we include one
interpreted language.

For RQ3 and RQ4, we have theWASM runtime environment as
an independent variable. Here, we decided to have two treatments:
Wasmer andWasmtime. Bothwere identified by looking at the repos-
itories with the most stars forWASM runtimes on GitHub [23].

The dependent variables of this study are the following:
• EnergyConsumption (RQ1 andRQ3): the energy consump-
tion will be measured in Joules (J).

• ExecutionTime (RQ2 and RQ4): the execution time for each
workload of the benchmark will be measured in milliseconds
(ms).

• Memory Usage (RQ2 and RQ4): the memory usage is the
mean memory usage during each run in %.

3.4 Experimental Hypotheses
For this study,we intend to reason about the impact of our previously
defined independent variables (programming language and runtime
environment) on dependent variables such as energy consumption,
execution time, and memory usage.
To answer RQ1 and RQ2, we define the following null hypothesis:

𝐻
pl, d
0 :𝜇𝑑Rust=𝜇

𝑑
Go=𝜇

𝑑
JavaScript=𝜇

𝑑
C

d∈ {energy usage, execution time, memory usage}
where pl represents the independent variable for the selected pro-

gramming language, while d stands for a dependent variable such
that d ∈ {energy usage, execution time, memory usage}. Consequently,
𝐻pl, d then determines the effect of the chosen programming lan-
guage pl on our dependent variable d. Furthermore, 𝜇𝑑𝑝 represents
the average measurement result of variable d with programming
language p selected as treatment.

This null hypothesis states that no meaningful difference for any
of our dependent variables d can be detected when executing our
benchmark with different programming languages. This leads to the
following alternative hypothesis, stating that for each dependent
variable d a statistically relevant difference can be observed between
programming languages:

𝐻
pl, d
𝑎 :∃(𝑝1,𝑝2) | 𝜇𝑑𝑝1≠𝜇𝑑𝑝2

∀p1, p2∈ {Rust, Go, JavaScript, C}
d∈ {energy usage, execution time, memory usage}

EASE ’23, June 14–16, 2023, Oulu, Finland LinusWagner, MaximilianMayer, AndreaMarino, Alireza Soltani Nezhad, Hugo Zwaan, and IvanoMalavolta

To answer RQ3 and RQ4 we construct the following hypotheses.
Consider re as the independent variable for the selected runtime

environment. Once again, d refers to our dependent variables. Then
𝐻 re, d determines the effect of the chosen runtime environment re
on our dependent variable d. Also, 𝛽𝑑𝑟 represents hereby the median
measurement result of variable d for a selected runtime environment,
which areWasmer andWasmtime as treatments. The null hypoth-
esis𝐻𝑟𝑒,𝑑

0 declares that the chosen runtime environment does not
introduce any meaningful difference for any of our dependent vari-
ables, energy usage, execution time, and memory usage. The null
hypothesis is formulated as:

𝐻
re, d
0 :𝛽𝑑Wasmtime=𝛽

𝑑
Wasmer

d∈ {energy usage, execution time, memory usage}
The alternative hypothesis𝐻𝑟𝑒,𝑑

𝑎 states that there is at least one
statistically meaningful difference between any of our runtime en-
vironment and our dependent variables. This is the formulation of
the alternative hypothesis:

𝐻
re, d
𝑎 :𝛽𝑑Wasmtime≠𝛽𝑑Wasmer
d∈ {energy usage, execution time, memory usage}

Finally, our two independent variables might interact with each
other. The effect of such interaction is modelled via a third set of
hypotheses. The following two hypotheses are defined for the in-
teraction of programming languages and runtime environments,
where 𝜇𝑝 is the effect of treatment pl (Rust/C/Go/JavaScript) of the
programming language factor fromRQ1 andRQ2, and 𝛽𝑟 is the effect
of treatment re (Wasmer andWasmtime) of the runtime environment
factor from RQ3 and RQ4.

The null hypothesis𝐻 (pl, re), d
0 states that there is no statistically

significant difference between programming languages and runtime
environments interactions and our dependent variables.

𝐻
(pl, re), d
0 :𝜇𝛽𝑑(p, r)=0

∃p∈ {Rust, Go, JavaScript, C}
∃r∈ {Wasmer, Wasmtime}

d∈ {energy usage, execution time,

memory usage, storage}

Thealternativehypothesis𝐻 (pl, re), d
0 asserts that at least one statis-

tically meaningful difference exists between programming language
and runtime environment interactions and our dependent variables.
This is the formulation of the alternative hypothesis:

𝐻
(pl, re), d
𝑎 :𝜇𝛽𝑑(p, r)≠0

∃p∈ {Rust, Go, JavaScript, C}
∃r∈ {Wasmer, Wasmtime}

d∈ {energy usage, execution time, memory usage}

3.5 Experiment Design
After identifying our subjects, variables, and constructing the re-
lated hypotheses for our experiment, we now have to design the
experiment. Based on our two independent variables and their corre-
sponding treatments,wewill usea “two factors -multiple treatments”
design type (2F-MT). The first factor results from research questions

RQ1 and RQ2, and defines the programming language used to ap-
proach a given subject. Possible treatments are Go, JavaScript, C,
and Rust, requiring us to use amulti-treatment design type. RQ3 and
RQ4 introduce theWASM runtime as a second factor, with possible
treatments beingWasmer andWasmtime.

To generate configurations to test within our experiment, we use
factorial design to include all combinations of treatments across
independent variables. Furthermore, we will test each combination
of treatments on all three benchmarking algorithms, resulting in
24 different configurations (4 programming languages×2 runtimes×
3 algorithms). Each of these configurations is then executed 10 times
to account for slight variations in-between runs due to background
activities of the OS and other potentially uncontrolled factors. Tak-
ing into consideration that we repeat each combination 10 times,
the dataset produced in this study contains 240 data points for each
dependent variable, for a total of 720 individual data points.

To answer the first two research questions, RQ1 and RQ2, all three
benchmark problems will be executed in all four programming lan-
guages and they will be executed using Wasmer, as it is the most
popularWASM runtime. Therefore, all four were chosen to be easily
compatiblewithWASM, either vianative language features, e.g. Rust,
or 3rd-party compilers, e.g. Emscripten for C. For JavaScript, we use
Javy1, aWASMembedded JavaScript runtime.Using these compilers,
the benchmark problems from the CLBGwill be compiled toWASM
bytecode. For RQ3 and RQ4, we will also execute all combinations
of benchmarking problems and programming languages, but this
time they will be executed on two different runtime environments
(namely, Wasmer andWasmtime).

3.6 Data Analysis
Data Exploration To get a first overview of the characteristics of
the captured data, we use descriptive statistics and box plots.
Check for Normality To be able to apply the correct statistical
tests to our data, we test our data for normality. We do this via the
Shapiro-Wilk test with𝛼 =0.05 to our data. Because for some hypoth-
esis our sample size can be as small as 10, the Shapiro-Wilk test can be
unreliable. As a consequence, we also visually confirm our findings
using histograms. Due to the amount of metrics, we only show a
selection of the plots and include the rest in the replication package.2
If we find that our data is not normal, we transform it using the fol-
lowing normalization techniques: logarithm, square root, 1/𝑥 , stan-
dardized Sepal width, standard scaling, andmin-max scaling [24]. To
confirm/reject a successful normalization, we repeat the Shapiro-
Wilk test. The tests results are included in the replication package.
Hypothesis Testing In the case that we find normalized data, we
will use the two way ANOVA test. However, if we have non-normal
data,wewill use a variety of non-parameterized tests. For hypothesis
1 we use the Kruskal-Wallis test. The Kruskal-Wallis test is a rank-
based test applicable to one-way data containing more than two
groups. Since there are more than two groups, we choose this statis-
tical test to evaluate our first hypothesis. For hypothesis 2 we use the
Wilcoxon Signed-Rank test. The unpaired two-samplesWilcoxon test
is a non-parametric alternative to the unpaired two-samples t-test
for comparing two independent sample groups. Our last hypotheses

1https://github.com/Shopify/javy
2https://github.com/S2-group/ease-2023-wasm-iot-rep-pkg

https://github.com/Shopify/javy
https://github.com/S2-group/ease-2023-wasm-iot-rep-pkg

On the Energy Consumption and Performance ofWebAssembly Binaries across . . . in IoT EASE ’23, June 14–16, 2023, Oulu, Finland

set features both of our factors, programming language andWASM
runtime, and both our performance and energy related metrics. If
our data is not normally distributed, we test the statistical signif-
icance of our hypothesis using the Aligned Rank Transformation
(ART) ANOVA test. An adjustment of the null hypothesis is hereby
not necessary, as the transformation is used to make the data more
amenable, however, it does not change the underlying assumptions
of the ANOVA test [25]. If our data was initially not suitable for para-
metric tests, we relied on the Aligned Rank Transformation and the
minimal statistical impact of normalization on ANOVA’s robustness
[26]. ANOVAwith aligned ranks transformation is a non-parametric
method that allows for multiple independent variables, interactions,
and repeated measures.
Effect Size EstimationWhenever our hypothesis tests identify a
statistically significant effect of a treatment or combination of such,
wewill useCliff’s Delta [27] to estimate its magnitude.We chose this
non-parametric test as it can be used even in case our data is not nor-
mally distributed. This way, we can identify whether the influence
of any treatment pair is not only of statistical significance, but also
of practical relevance. We will interpret Cliff’s Delta as proposed by
Vargha and Delaney [28].

4 EXPERIMENT EXECUTION
As shown in Figure 1, we run our experiments on a Raspberry Pi 3
Model B Rev 1.2with the following characteristics: 1GBRAM, Broad-
com BCM2835 64-bit System on Chip, Processor sub-architecture
ARM1176JZF-S at 1.2GHz. The Raspberry Pi is a popular choice
for experiments in various domains [29–31] and allows for cus-
tomization at a low price [32]. We run it with Raspberry Pi OS Lite
64-Bit (released 22.09.2022) and we use the Experiment-Runner, “a
generic framework to automatically execute measurement-based
experiments on any platform”[33], to orchestrate our experiment.
We make both our code for setting up the infrastructure and the
experiment orchestrator available in our replication package.

Experimental
Core

Action

run compilation

trigger playbooks

Bash

Docker-
Compose

Ansible

Raspberry Pi

Experiment-
Runner

WASM Runtime

Application
Binaries (WASM)

setup
runtimes

copy binaries

copy and
initialize runner

Tool

Figure 1: Experimental setup.Docker andAnsible areused to
automatically set up aRaspberryPi 3BwithWASMruntimes
and applications.

To compile our benchmark, we defined a Docker image for each
language included in our experiment. We exposed each image as
a docker-compose service, which can be configured to run on a
selected set of benchmark algorithms, and stores theWASMexecuta-
bles in a mounted volume, in our case a Raspberry Pi. To make our

experiment easy to reproduce, we have also automated the setup
process of the Raspberry Pi using Ansible. This includes the installa-
tion of runtimes, the Experiment-Runner, and other configurations.
As Ansible operates without an agent, no additional software needs
to be installed on the device itself, reducing background noise dur-
ing the experiment. Similarly, the separation of compilation and
execution allows us to reduce the number of tasks that have to be
performed on the Raspberry Pi itself, reserving it for the exclusive
purpose of running our experiments. Docker, on the other hand,
improves reproducibility, as it is a platform-independent technology
and provides self-documentation of the performed steps as a byprod-
uct of creating the corresponding images. It is important to note that
in this experiment theWASM binaries are executed bare-metal on
the Raspberry Pi; Docker is used exclusively for the compilation step,
which is not part of the measurement phase of the experiment.

A single run of a configuration is repeated 10 times to account
for statistical errors. Furthermore, we introduce a pseudo-random
execution order for our configurations, where we validate that sim-
ilar configurations are not executed consecutively. This allows us to
minimize the risk of temporary background tasks affecting a specific
configuration. In order to minimize the impact of CPU heating and
general system throttle, we introduce a break of one minute after
each individual benchmark run.

We collect measures via three tools: PowerJoular, PS, and time.
PowerJoular is a tool for monitoring the power consumption of
software and hardware in realtime [34], while recording the energy.
We chose PowerJoular over other tools like pTop [35], because it is
designed specifically with the Raspberry Pi in mind. PS is a Linux
command-line tool that provides information about selected pro-
cesses, captures the memory usage of our benchmark programs.
It is included in Raspberry Pi OS, and allows for easy application
in an automated setting. We measure the runtime with the Linux
command-line tool called time.

5 RESULTS
5.1 Impact of programming languages
5.1.1 Data Exploration. As shown in Figure 2a, Go exceeds the
other compiled languages and uses 3.22xmore energy than Rust, and
2.05x more energy than C. Compared with the interpreted language
JavaScript, the energy usage of Go is low. JavaScript needs 8.83x
more energy than Go. We notice a similar pattern for the execution
time, which appears to be proportional to the energy consumption
(notice that only the scale has changed). For the memory usage, Go
continues to outrank C and Rust by, on average, a factor of at most
2.20. However, while Rust previously performed best, we observe
that C is now the most performant language in terms of memory
usage with an average usage of 2.774% of the total memory. As we
can infer from Figure 2c, the memory usage of C varies significantly,
while Rust is the most stable of all languages. While JavaScript is
still the most resource-demanding language, the differences are now
considerably smaller, with only a factor of 4.20 between the memory
usage of C and JavaScript.

5.1.2 Normality and Data Transformation. Our analysis of the his-
tograms, which can be found in the replication package, suggest a

3Raw numbers of each of the presented plots are present in the replication package.

EASE ’23, June 14–16, 2023, Oulu, Finland LinusWagner, MaximilianMayer, AndreaMarino, Alireza Soltani Nezhad, Hugo Zwaan, and IvanoMalavolta

2048

8192

32768

C Go JavaScript Rust
Programming language

En
er

gy
 u

sa
ge

 (
Jo

ul
es

)

Language
C
Go
JavaScript
Rust

(a) Energy usage.

1024

4096

16384

C Go JavaScript Rust
Programming language

Ex
ec

ut
io

n
tim

e
(s

)

Language
C
Go
JavaScript
Rust

(b) Execution time.

2

4

8

16

C Go JavaScript Rust
Programming language

M
em

or
y

us
ag

e
(%

)

Language
C
Go
JavaScript
Rust

(c) Memory usage.

Figure 2: Box-plots for 𝑯𝒑𝒍 . The dependent variables are scaled logarithmically for better visibility 3.

0.00

0.02

0.04

0 10000 20000 30000
Energy Usage (Joules)

D
en

si
ty

Language
C
Go
JavaScript
Rust

(a) Energy usage.

0.00

0.03

0.06

0.09

0.12

0 5000 10000 15000
Execution time (s)

D
en

si
ty

Language
C
Go
JavaScript
Rust

(b) Execution time.

0

1

2

4 8 12 16
Memory usage (%)

D
en

si
ty

Language
C
Go
JavaScript
Rust

(c) Memory usage.

Figure 3: Density curves for 𝑯𝒑𝒍 .

non-normal distribution. We use the Shapiro-Wilks test to confirm
this for each of our sub-dataset, which did not yield p-values above
0.05. Therefore,we can reject thenormal distributionnull hypothesis.
We applied the normalization techniques mentioned in Section 3.6,
but this did not yield normalized data.

5.1.3 Hypothesis Testing. Our first hypothesis set features a single
factor, the programming language, and both our performance and
energy metrics. Since we apply multiple treatments to the program-
ming language and that our data is not normally distributed even
after transformation (see Section 5.1.2), we chose to test the statisti-
cal significance of our hypothesis using the Kruskal-Wallis test. Our
results inTable 2 indicate that themean for ourmetrics across the lan-
guage treatments is significantly different, with p-values very close
to 0. Therefore, we can reject the null hypothesis𝐻𝑝𝑙

0 . This means
that there is a significant difference among at least twoprogramming
languages regarding both energy, execution time, and memory.

Table 2: Test results for hypothesis 𝑯𝒑𝒍 across all variables.

Chi-Square DF P-value

Energy Usage 74.074 3 5.722e-16
Execution Time 74.075 3 5.719e-16
Memory Usage 64.078 3 7.899e-14

5.1.4 Effect Size Estimation. As the Kruskal-Wallis test provides us
with significant evidence that the choice of programming language

has an effect on all of our dependent variables, we will now use
Cliff’s Delta to uncover the magnitude of this effect. By looking at
the density curves in Figure 3, we expect a large effect size given the
spread of the memory usage and also the different peaks of energy
usage and execution time. The results can be found in Table 3.

Table 3: Cliff’s Delta values for 𝑯𝒑𝒍 .

C Rust Go JavaScript

En
er
gy

U
sa
ge

C - 1.000 -1.000 -1.000
Rust -1.000 - -1.000 -1.000
Go 1.000 1.000 - -1.000

JavaScript 1.000 1.000 1.000 -

Ex
ec
ut
io
n

T
im

e

C - 1.000 -1.000 -1.000
Rust -1.000 - -1.000 -1.000
Go 1.000 1.000 - -1.000

JavaScript 1.000 1.000 1.000 -

M
em

or
y

U
sa
ge

C - -0.175 -1.000 -1.000
Rust 0.175 - -0.960 -1.000
Go 1.000 0.960 - -0.850

JavaScript 1.000 1.000 0.850 -

Interestingly, Cliff’s Delta takes a value of 1 or -1 in most cases.
This represents the maximum and minimum value possible respec-
tively, and thus a very large effect size confirming our expectations.
In particular, JavaScript is significantly slower and consumes far
more energy than any other language, while Rust is seemingly faster
anduses less energy.Only for thememoryusagewefindvalues other

On the Energy Consumption and Performance ofWebAssembly Binaries across . . . in IoT EASE ’23, June 14–16, 2023, Oulu, Finland

than 1 and -1. Here, the effect size differs from small, with a value of
0.175/-0.175 for C and Rust, to large for all other cases. Overall, this
result is also in line with the box-plots in Figure 2, which present a
similar trend between the different languages.

5.2 Impact ofWASM runtime environments
5.2.1 Data Exploration. In Figure 4we compare both runtimes,with
Figure 4a showing energy usage. Based on the mean, Wasmer uses
about 18.59% less energy thanWasmtime. Both runtimes are posi-
tively skewed.When comparing both medians, Wasmer only uses
4.57% less energy compared toWasmtime.

Figure 4b compares execution time, which seems to be propor-
tional to the energy usage.

Finally, Figure 4c shows thatWasmer also has a lower memory
usage thanWasmtime. Compared to the energy usage, the difference
in memory usage is rather high, with a deviation of 14.95% between
bothmedians. Both distributions are negatively skewed, with higher
rather than lower memory usage being the norm. Contrary to the
energy usage and execution time, whereWasmer has a smaller in-
terquartile range, for the memory usageWasmtime has the smallest
of both runtimes.

5.2.2 Normality and Data Transformation. The histograms in the
replication package suggest a non-normal distribution. This result
is also confirmed by the Shapiro-Wilks test. We applied the normal-
ization techniques mentioned in Section 3.6, but this did not give us
normalized data.

5.2.3 Hypothesis Testing. Our second hypotheses set features a sin-
gle factor, theWASM runtime, and both our performance and energy
related metrics. Given that we only apply two different treatments
to our single factor, Wasmer andWasmtime, and that our data is not
normally distributed even after transformation (see Section 5.2.2),
we chose to test the statistical significance of our hypothesis using
theWilcoxon Rank-Sum test.

Table 4:WilcoxonRank-Sum test results for hypothesis𝑯 𝒓𝒆

across all metrics.

W P-value

Energy Usage 700 0.3383
Execution Time 700 0.3383
Memory Usage 646 0.1393

As shown in Table 4, there is no significant difference for all our
metrics across the different runtime environments, with p-values
as large as 0.3383. Therefore, we cannot reject the null hypothesis
𝐻𝑟𝑒
0 . Since the statistical test did not yield significant results, we do

not perform an effect size estimation.

5.3 Interaction between programming
languages and runtime environments

5.3.1 Data Exploration. In Figure 5 we compare the interaction of
runtimes with different languages. The Figure 5a shows the energy
usage of each programming language among the two single run-
time environments. When JavaScript is run inWasmtime, it uses the
most energy of all and consumes 21.29% more energy than it does in
Wasmer. Running Rust inWasmer uses the least amount of energy

of all treatments. Compared to its run in Wasmtime, it uses 1.41%
less energy on average and 35.34% less energy than the third least
energy-consuming combination C inWasmtime.

Similarly to the two previous hypotheses, execution time exhibits
a similar pattern as energy consumption (see Figure 5b).

Finally, Figure 5c shows the memory usage of a single language
in a single runtime. While JavaScript is still the most demanding
language, it now performs worst in Wasmer and consumes 0.83%
more memory than inWasmtime. C inWasmer is the programming
language consuming the lowest amount of memory (i.e., 2.099%).

5.3.2 Normality and Data Transformation. Based on the histograms
and on the results of the Shapiro-Wilk test (both reported in the
replication package), we conclude that our data does not follow a
normal distribution.

5.3.3 Hypothesis Testing. Since the data does not follow a normal
distribution, we apply the ART ANOVA test (see Table 5).

Table 5: Interactions for energy usage, execution time, and
memory usage.

Variable DF Df.res F.value P-value

En
er
gy

U
sa
ge Language 3 72 369.49 <2.22e-16

Runtime 1 72 237.85 <2.22e-16
Language:Runtime 3 72 1509.09 <2.22e-16

Ex
ec
.

T
im

e Language 3 72 376.16 <2.22e-16
Runtime 1 72 242.46 <2.22e-16
Language:Runtime 3 72 1510.24 <2.22e-16

M
em

.
U
sa
ge Language 3 72 129.4181 <2e-16

Runtime 1 72 2.8784 0.094098
Language:Runtime 3 72 3.5444 0.018691

Hereby, we can identify an effect for the programming languages
on all dependent variables, as the corresponding p-values are all
smaller than 0.05. Meanwhile, the runtime has no effect on memory
usage with a p-value of 0.094, which is in line with our previous
results using theWilcoxon Rank-Sum. However, with the ANOVA
test, we identify a statistically significant effect for both, the energy
usage and execution time, with corresponding p-values approaching
0. This is likely due to the fact that our data was not fully normalized,
and the Aligned Rank Transformation only provides an approxima-
tion. Consequently, the results are less reliable than the previous
results based on non-parametric tests.

The interaction of runtimes and programming languages has a
statistically significant impact, as shown by the corresponding p-
values for all three dependent variables. Thus, we can reject the null
hypothesis𝐻 (𝑝𝑙,𝑟𝑒)

0 .

5.3.4 Effect Size Estimation. As we were able to reject the null hy-
pothesis𝐻 (𝑝𝑙,𝑟𝑒)

0 for all three dependent variables, we have statis-
tically significant evidence that the combination of different treat-
ments for our two factors influences the resulting energy usage, ex-
ecution time, and memory usage. As a result, we use Cliff’s Delta to
verify that this effect is alsoof realistic impact.Thedeltavalues for the
memory usage can be found inTable 6. For the othermetrics, all delta
values are either 1.000or−1.000, soweomit themhere for readability.

This means that the effect size for all dependent variables is very
large, for all possible interactions of language and runtime. This is
in large part due to the large influence of the selected programming

EASE ’23, June 14–16, 2023, Oulu, Finland LinusWagner, MaximilianMayer, AndreaMarino, Alireza Soltani Nezhad, Hugo Zwaan, and IvanoMalavolta

2048

8192

32768

wasmer wasmtime
runtime

en
er

gy
 u

sa
ge

 (
Jo

ul
es

)

runtime
wasmer
wasmtime

(a) Energy usage.

1024

4096

16384

wasmer wasmtime
runtime

ex
ec

ut
io

n
tim

e
(s

)

runtime
wasmer
wasmtime

(b) Execution time.

2

4

8

16

wasmer wasmtime
runtime

m
em

or
y

us
ag

e
(%

)

runtime
wasmer
wasmtime

(c) Memory usage.

Figure 4: Box-plots comparingWasmer andWasmtime.

2048

8192

32768

c go javascript rust
programming language

en
er

gy
 u

sa
ge

 (
Jo

ul
es

)

language
c
go
javascript
rust

runtime
wasmer
wasmtime

(a) Energy usage.

1024

4096

16384

c go javascript rust
programming language

ex
ec

ut
io

n
tim

e
(s

) language
c
go
javascript
rust

runtime
wasmer
wasmtime

(b) Execution time.

2

4

8

16

c go javascript rust
programming language

m
em

or
y

us
ag

e
(%

) language
c
go
javascript
rust

runtime
wasmer
wasmtime

(c) Memory usage.

Figure 5: Box-plots comparing the interaction of runtime and language.

Table 6: Cliff’s Delta values for 𝑯 (𝒑𝒍,𝒓𝒆) - Memory Usage.

Wasmer C Wasmer Rust Wasmer Go Wasmer Javascript Wasmtime C Wasmtime Rust Wasmtime Go Wasmtime Javascript

Wasmer C - -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
Wasmer Rust 1.000 - -1.000 -1.000 -0.500 - -1.000 -1.000
Wasmer Go 1.000 1.000 - -1.000 1.000 0.840 -0.640 -0.760

Wasmer Javascript 1.000 1.000 1.000 - 1.000 1.000 1.000 0.440
Wasmtime C 1.000 0.500 -1.000 -1.000 - 0.800 -1.000 -1.000

Wasmtime Rust 1.000 - -0.840 -1.000 -0.800 - -1.000 -1.000
Wasmtime Go 1.000 1.000 0.640 -1.000 1.000 1.000 - -0.640

Wasmtime Javascript 1.000 1.000 0.760 -0.440 1.000 1.000 0.640 -

language. However, the interaction of both factors plays a similarly
important role: When comparing the configuration "Wasmtime - C"
to "Wasmer - Rust", the delta value for memory usage is 0.500, how-
ever, when comparing "Wasmer - C" to "Wasmer - Rust", the delta
value moves to −1.000. Consequently, the impact ofWasmer in com-
bination with C is much larger than when paring C withWasmtime,
evenwhencomparing to thesameconfigurationofWasmerandRust.

6 DISCUSSION
We analyzed our results based on our three hypothesis pairs, as this
allowed for a meaningful grouping and interpretation of our data.

In the following section, we will translate these results to our four
research questions, and expand on our interpretation by taking the
perspective of a IoT software developer.

For our first two research questions, RQ1 and RQ2, we focused on
comparing the energy consumption and performance respectively
of different source programming languages compiled to WASM.
Based on our results for the corresponding hypothesis𝐻pl, we were
able to gather statistically significant evidence that the chosen pro-
gramming language does in fact have a meaningful influence on all
selected dependent variables. Furthermore, the effect size is large
enough to result in real-world impact.

On the Energy Consumption and Performance ofWebAssembly Binaries across . . . in IoT EASE ’23, June 14–16, 2023, Oulu, Finland

However, this is not true for our research questions RQ3 and RQ4,
whichwere analyzed by themeans of hypothesis𝐻 re. Focused on the
impact of the selected runtime on energy consumption and perfor-
mance, we investigated data generated using several programming
languages. However, we found no statistical significance related to
an impact on any of our dependent variables, and consequently, we
cannot assume any real-world difference of the runtime on energy
consumption or performance.

Finally, we analyzed the interaction of both, programming lan-
guage and runtime, as part of our third and final hypothesis,𝐻 (pl, re).
The resulting data is relevant for all four research questions, as it
impacts both, the choice of programming language and runtime.
Hereby, we found statistical evidence that the interaction of our two
factors has in fact an effect on all of our dependent variables. Fur-
thermore, this effect is also relevant in a realistic setting, indicating
that developers should carefully pair the right runtime with a given
programming language to observe a real-world impact.

Interpreting these results from the perspective of an IoT software
developer, we have several recommendations. IoT devices often limit
available resources, and consequently any reduction in power or
resource usage is welcome.

In particular, we discourage developers from using WASM in
combinationwith Javy-compiled JavaScript,whenpossible.Our data
clearly shows that it performs worse than any other programming
language, independently of the chosen runtime. Lin Clark from the
Bytecode Alliance explains a possible reason4: To run JavaScript,
an engine is bundled with aWASM instance. However, WASM does
not allow JIT compilation, a mechanism which speeds JavaScript
engines up. Towork around that, they recommend pre-initialization,
which reduces the startup time, and inline caches,which increase the
throughput. Javyusespre-initialization to reduce its startup time, but
does not use inline caches to increase the throughput. Javy needs to
be optimized further to deliver similar results to the other languages.

When looking for a particularly fast and energy-efficient lan-
guage, Rust is a viable option, outperforming other languages across
all test scenarios. However, it is important to note that benchmark
algorithms used during our tests were designed to push the system
to its limits. As a consequence, theCPUusage during our tests stayed
at around 98%-100%, leading to similar energy consumption per sec-
ond for all tested programming languages. Therefore, the improved
energy efficiency is a direct consequence of the lower execution time,
andmore research is needed to investigate efficiency for less intense
loads. For memory usage, both C and Rust perform reasonably well.
While C has instances where it uses less memory than a comparable
Rust program, results for C tend to spread over a larger range. How-
ever, on any reasonablymodern system, neither of both should cause
problems. In terms of runtime impact, we were not able to identify a
statistically significant effect, thus we cannot make any general rec-
ommendations. However, the data found in Figures 5a and 5b reveals
that Go tends to be faster when running onWasmer, while C is more
efficient when usingWasmtime. Consequently, the correct choice
of runtime is still important, when a certain language has to be used.
Nonetheless, the impact of the chosen language is by far greater.

Because we focussed on the availability in multiple programming
languageswhenwe selected our benchmarks, our findingsmight not

4https://bytecodealliance.org/articles/making-javascript-run-fast-on-Webassembly

be generalizable toWASM as a whole. More research with different
benchmarks and more samples is needed for clarifying this aspect.

7 THREATS TOVALIDITY
Internal Validity. The execution of the whole experiment is com-
pletely automatized via dedicated orchestration scripts (which are
available in the replication package), thus limiting the possible in-
fluence of manual steps and allowing for independent replication
and verification of the experiment. Several precautions have been
taken while setting up the measurement infrastructure in order to
collect metrics in a reliable and precisemanner, such as the 1-minute
waiting time between runs, the repetition of each experimental trial,
the stopping of unnecessary background processes at the OS level,
and the randomization of the order of the runs of the experiment.
External Validity. The external validity of our experiments is
threatened by three factors: the compile chain, the immature ecosys-
tem, and the use of micro-benchmarking algorithms.

JavaScripts bytecode needs to run in a dedicated runtime. At the
moment, JavaScript applications are therefore interpretedbyanative
JavaScript runtime wrapped intoWASM. Because there are many
ways todo this andmany JavaScript runtimes to choose, our selection
Javy can significantly influence the generalizability of our findings
for the energy consumption andperformance of JavaScript inWASM.
Because we chose the most popular compile chain, we deem this an
acceptable result for practitioners, but call for more research that
helps to generalize the interaction ofWASM and JavaScript.

The immaturity of WASM supporting tools for JavaScript also re-
flects in thewholeWASMecosystem.Manyprogramming languages
are either not or poorly supported. This has impacted our choice of
the programming language in a way that we chose programming
languages by taking theirmaturity inWASMinto account. Therefore,
the findings in this paper are highly language specific and largely
show the mature parts of WASM. Nevertheless, due to the selection
of programming languages mostly on popularity, we are confident
to draw relevant conclusions for practitioners.

Finally, because we target multiple programming languages, we
had to use micro-benchmarks in our experiments, which only exer-
cise individual characteristics of realistic workloads. This makes the
results less tailored to the IoT-domain. However, we are not aware
of realistic IoT workload that are available in multiple programming
languages and creating our ownwould be both time-consuming and
challenging to show correctness.
Construct Validity. In terms of construct design, our research was
partially affected by the large range of metrics we opted for. While
striving for a setup that would prevent mono-operational biases,
the inclusion of some of our measures made part of our analysis
redundant. Specifically, metrics such as the CPU usage in our initial
analysis did not yield interesting results, because the processor was
always fully utilized as a result of the used benchmarks. Additionally,
the strong correlation between the energy consumption expressed
in Joules and our execution time makes one of them redundant.
ConclusionValidity. As discussed in Section 3.6, wemitigated the
risks of having erroneous statistical results, we carefully checked the
assumptions of the applied statistical tests.Moreover, our replication
package allows to verify each phase of our data analysis.

https://bytecodealliance.org/articles/making-javascript-run-fast-on-Webassembly

EASE ’23, June 14–16, 2023, Oulu, Finland LinusWagner, MaximilianMayer, AndreaMarino, Alireza Soltani Nezhad, Hugo Zwaan, and IvanoMalavolta

8 CONCLUSIONS AND FUTUREWORK
In this report, we analyzed the impact of selected programming lan-
guages and runtimes on the energy consumption andperformance of
WASMbinaries in the context of IoT devices.We tested four different
programming languages across two different runtimes by themeans
of three benchmarking algorithms, measuring energy usage, execu-
tion time, andmemory usage. The results of this experiment provide
evidence, that the source programming language can have a major
impact on all the selected metrics, and that a bad choice can result in
performance up to 5.4 times worse.We identified C and Rust as solid
options for software projects working with low-powered hardware
traditionally used in IoT devices, while Javy-compiled JavaScript
should be avoided due to its high resource usage.We did not arrive at
conclusive results considering the choiceof runtimes, as different lan-
guages can favor different runtimes.We recommend further research
in this area to allow for a deeper understanding of the relation be-
tween programming language and runtime inWASM. Furthermore,
the severe performance penalty experienced when using JavaScript
compiled with Javy should be further investigated, as it might hint
to a compatibility issue ofWASMwith interpreted languages.

For future work, we plan to use more than 3 benchmarks to in-
crease the generalizability and confidence in our results. We also
plan to study the used benchmarks independently to understand if
WASM favors certain kinds of computations. Finally, to see, if our
findings also extend to real-world workloads, we want to extend our
work with realistic benchmarks.

ACKNOWLEDGMENT
This project is partially supported by (i) the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 871342 “uDEVOPS” and (ii)
the Individual Travel Grant of the Amsterdam University Fund.

Wewould like to thankSaúlCabrera for supporting and informing
us on the current state of Javy.

REFERENCES
[1] O. Vermesan and P. Friess, Internet of things: converging technologies for smart

environments and integrated ecosystems. River Publishers, 2013.
[2] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Consolidate IoT Edge

Computing with Lightweight Virtualization,” IEEE Network, vol. 32, no. 1, pp.
102–111, 2018.

[3] F.Al-Turjman,EdgeComputing FromHype toReality, ser. EAI/Springer Innovations
in Communication and Computing. Springer Cham, 2019.

[4] W3C Community Group. [Online]. Available: https://webassembly.org/
[5] WebAssembly Working Group, “WebAssembly Core Specification,”

https://www.w3.org/TR/wasm-core-2/.
[6] B. Spies andM.Mock, “AnEvaluationofWebAssembly inNon-WebEnvironments,”

in 2021 XLVII Latin American Computing Conference (CLEI), 2021, pp. 1–10.
[7] Y. Yan, T. Tu, L. Zhao, Y. Zhou, andW.Wang, “Understanding the Performance of

Webassembly Applications,” in Proceedings of the 21st ACM Internet Measurement
Conference, ser. IMC ’21. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 533–549.

[8] D. Herrera, H. Chen, E. Lavoie, and L. Hendren, “Numerical Computing on the
Web: Benchmarking for the Future,” in Proceedings of the 14th ACM SIGPLAN
International Symposium on Dynamic Languages, ser. DLS 2018. New York, NY,
USA: Association for Computing Machinery, 2018, pp. 88–100.

[9] F. Eriksson and S. Grunditz, “Considering WebAssembly Containers on IoT
Devices as Edge Solution,” Bachelor’s Thesis, Linköping University, 2021. [Online].
Available: https://liu.diva-portal.org/smash/get/diva2:1575228/FULLTEXT01.pdf

[10] F. Oliveira and J. Mattos, “Analysis of WebAssembly as a Strategy to Improve
JavaScript Performance on IoT Environments,” in Anais Estendidos do X Simpósio
Brasileiro de Engenharia de Sistemas Computacionais. Porto Alegre, RS, Brasil:
SBC, 2020, pp. 133–138.

[11] J. DeMacedo, R. Abreu, R. Pereira, and J. Saraiva, “WebAssembly versus JavaScript:
Energy and Runtime Performance,” in 2022 International Conference on ICT for
Sustainability (ICT4S), 2022, pp. 24–34.

[12] M. van Hasselt, K. Huijzendveld, N. Noort, S. de Ruijter, T. Islam, and I. Malavolta,
“Comparing the Energy Efficiency of WebAssembly and JavaScript in Web
Applications on Android Mobile Devices,” in Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering 2022, ser. EASE
’22. New York, NY, USA: Association for Computing Machinery, 2022, pp.
140–149. [Online]. Available: https://doi.org/10.1145/3530019.3530034

[13] R. M. Hampau, M. Kaptein, R. van Emden, T. Rost, and I. Malavolta, “An Empirical
Study on the Performance and Energy Consumption of AI Containerization Strate-
gies for Computer-Vision Tasks on the Edge,” in Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering 2022, ser. EASE
’22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 50–59.

[14] D. Bagley, B. Fulgham, I. Gouy, and D. Alioth, “The
Computer Language Benchmarks Game.” [Online]. Available:
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

[15] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and J. Saraiva,
“Ranking programming languages by energy efficiency,” Science of Computer
Programming, vol. 205, p. 102609, 2021.

[16] W. Oliveira, R. Oliveira, and F. Castor, “A Study on the Energy Consumption of
Android App Development Approaches,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), 2017, pp. 42–52.

[17] L. Koedijk and A. Oprescu, “Finding Significant Differences in the Energy
Consumption when Comparing Programming Languages and Programs,” in 2022
International Conference on ICT for Sustainability (ICT4S), 2022, pp. 1–12.

[18] M. Denti and J. K. Nurminen, “Performance and Energy-Efficiency of Scala on
Mobile Devices,” in 2013 Seventh International Conference on Next Generation
Mobile Apps, Services and Technologies, 2013, pp. 50–55.

[19] Stack Overflow, “Stack overflow developer survey 2022,” https://survey.
stackoverflow.co/2022/.

[20] R. Murdock, S. Hoffenberg, and C. Rommel, “Voice of the IoT Engineer 2017:
Survey Dataset and Analysis,” https://www.jasoncassel.com/assets/files/White-
papers/Voice-of-the-IoT-Engineer.pdf, 2018.

[21] C. Eberhardt, “The State of WebAssembly 2022,” https://blog.scottlogic.com/2022/
06/20/state-of-wasm-2022.html, Jun. 2022.

[22] “AwesomeWebAssembly Languages,” https://github.com/appcypher/awesome-
wasm-langs, 2022.

[23] GitHub, “WASM Runtimes,” https://github.com/search?q=WASM+Runtimes&
type=repositories&s=stars&o=desc.

[24] S. G. K. Patro and K. K. Sahu, “Normalization: A Preprocessing Stage,” 2015.
[25] J. O. Wobbrock, L. Findlater, D. Gergle, and J. J. Higgins, “The Aligned Rank Trans-

form for Nonparametric Factorial Analyses Using Only Anova Procedures,” in Pro-
ceedings of the SIGCHIConference onHuman Factors in Computing Systems, ser. CHI
’11. NewYork,NY,USA:Association forComputingMachinery, 2011, pp. 143–146.

[26] J. P. S. Keenan A. Pituch, Applied Multivariate Statistics for the Social Sciences:
Analyses with SAS and IBM’s SPSS, 6th ed. Routledge, 2015.

[27] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal questions.”
Psychological Bulletin, vol. 114, pp. 494–509, 1993.

[28] A. Vargha and H. D. Delaney, “A Critique and Improvement of the CL Common
Language Effect Size Statistics of McGraw andWong,” Journal of Educational and
Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[29] A. Kumar, G. Chattree, and S. Periyasamy, “Smart Healthcare Monitoring System,”
Wireless Personal Communications, vol. 101, no. 1, pp. 453–463, Jul. 2018.

[30] A. K. Saha, S. Sircar, P. Chatterjee, S. Dutta, A. Mitra, A. Chatterjee, S. P.
Chattopadhyay, and H. N. Saha, “A raspberry Pi controlled cloud based air and
sound pollution monitoring systemwith temperature and humidity sensing,” in
2018 IEEE 8th Annual Computing and CommunicationWorkshop and Conference
(CCWC), 2018, pp. 607–611.

[31] S. A. Umarghanis, F. Darari, andA.Wibisono, “A Low-Cost IoT Platform for Crowd
Density Detection in Jakarta Commuter Line,” in 2020 International Conference on
Advanced Computer Science and Information Systems (ICACSIS), 2020, pp. 121–128.

[32] M. Maksimovic, V. Vujovic, N. Davidović, V. Milosevic, and B. Perisic, “Raspberry
Pi as Internet of Things hardware: Performances and Constraints,” in Proceedings
of the 1st International Conference on Electrical, Electronic and Computing
Engineering, Jun. 2014.

[33] N. Chalkiadakis and I. Malavolta, “Experiment-Runner,” https://github.com/S2-
group/experiment-runner, 2022.

[34] A. Noureddine, “PowerJoular and JoularJX: Multi-Platform Software Power
MonitoringTools,” in 2022 18th InternationalConference on Intelligent Environments
(IE), 2022, pp. 1–4.

[35] T. Do, S. Rawshdeh, and W. Shi, “ptop: A process-level power profiling tool,”
in Proceedings of the 2nd Workshop on Power Aware Computing and Systems
(HotPower’09), Oct. 2009.

https://webassembly.org/
https://www.w3.org/TR/wasm-core-2/
https://liu.diva-portal.org/smash/get/diva2:1575228/FULLTEXT01.pdf
https://doi.org/10.1145/3530019.3530034
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://www.jasoncassel.com/assets/files/White-papers/Voice-of-the-IoT-Engineer.pdf
https://www.jasoncassel.com/assets/files/White-papers/Voice-of-the-IoT-Engineer.pdf
https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://github.com/search?q=WASM+Runtimes&type=repositories&s=stars&o=desc
https://github.com/search?q=WASM+Runtimes&type=repositories&s=stars&o=desc
https://github.com/S2-group/experiment-runner
https://github.com/S2-group/experiment-runner

	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Research Questions
	3.2 Subjects Selection
	3.3 Experimental Variables
	3.4 Experimental Hypotheses
	3.5 Experiment Design
	3.6 Data Analysis

	4 Experiment Execution
	5 Results
	5.1 Impact of programming languages
	5.2 Impact of WASM runtime environments
	5.3 Interaction between programming languages and runtime environments

	6 Discussion
	7 Threats To Validity
	8 Conclusions and Future Work
	References

